
Math 445

Handy facts for the second exam

Don't forget the handy facts from the �rst exam!

Continued Fractions.

If we look at each line of the calculation of g.c.d of a and b,

a = bq0 + r0, b = r0q1 + r1, : : : , rn�2 = rn�1qn + rn, rn = rn�1qn+1 + 0

they can we re-written as
a

b
= q0 +

r0
b
;
b

r0
= q1 +

r1
r0
; : : :

rn�2
rn�1

= qn +
rn
rn�1

;
rn
rn�1

= qn+1

When we put these together, we get a continued fraction expansion of a=b

(*)
a

b
= q0 +

1

q1 +
1

q2+
1

:::+ 1
qn+1

which, for the sake of saving space, we will denote hq0; q1; : : : ; qn+1i. Note that, conversely,
given a collection q0; : : : ; qn+1 of integers, we can construct a rational number, which we
denote hq0; q1; : : : ; qn+1i, by the formula (*).

Formally, we can try to do the same thing with any real number x; i.e, \compute" the g.c.d.
of x and 1 :

x = 1 � a0 + r0, 1 = r0a1 + r1, : : : , rn�2 = rn�1an + rn, where the ai's are integers

Unlike for the rational number a=b, if x is irrational, we shall see that this process does not
terminate, giving us an \in�nite" continued fraction expansion of x, ha0; a1; a2 : : :i . Our
main goal is to �gure out what this sequence of integers means!

First, a slightly di�erent perspective:
x = a0 + r0 with 0 � r0 < 1 means a0 = bxc is the largest integer � x; bblahc is the greatest

integer function. 1 = r0a1+ r1 with 0 � r1 < r0 means 1=r0 = a1+(r1=r0) = a1+x1 with
0 � x1 < 1, so q1 = b1=r0c. In general, the process of extracting the continued fraction
expansion of x looks like:

(**) x = bxc+ x0 = a0 + x0; 1=x0 = b1=x0c+ x1 = a1 + x1; : : : ;
1=xn�1 = b1=xn�1c+ xn = an + xn; : : :

If we stop this at any �nite stage, then we can, just as in the case of a rational number a=b,
reassemble the pieces to give

x = ha0; a1; : : : ; an�1; an + xni = ha0; a1; : : : ; an�1; an; 1=xni
If we ignore the last xn, we �nd that ha0; a1; : : : ; an�1; ani is a rational number (proof:
induction on n), called the nth convergent of x. The integers an are called the nth partial

quotients of x. Note that since 0 � x0 < 1, 1=x0 > 1, so a1 � 1. This is true for all later
calculations, so ai � 1 for all i � 1. This sort of continued fraction expansion is what is
called simple. We will, in our studies, only deal with simple continued fractions.

For example, we can compute that, for x =
p
2, a0 = 1, x0 =

p
2 � 1, 1=x0 =

p
2 + 1,

a1 = 2, x1 =
p
2 � 1 = x0, so the pattern will repeat, and

p
2 has continued fraction

expansion h1; 2; 2; : : :i. By computing some partial quotients, one can show that � has
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expansion that begins h3; 7; 15; 1; 292; 1; 1; 1; 2; 1; 3; 1; 14; 2; 1; 1; : : :i . Euler showed that e
= h2; 1; 2; 1; 1; 4; 1; 1; 6; 1; 1; 8; 1; 1; 10; 1; 1; 12; : : :i .

By looking at the expression for a continued fraction, that we started with, it should be
apparent that

ha0; a1; : : : ; an�1; ani = ha0; a1; : : : ; an�1 + 1

an
i = a0 +

1

ha1; : : : ; an�1; ani
From this it follows, for example, that ha0; a1; : : : ; an�1; ani = ha0; a1; : : : ; an�1; an � 1; 1i .
But these are the only such equalities:

Prop: If ha0; a1; : : : ; ani = hb0; b1; : : : ; bmi and an; bm > 1, then n = m and ai = bi for all
i = 0; : : : ; n.

Computing ha0; a1; : : : ; ani from ha0; a1; : : : ; an�1i:
ha0; a1; : : : ; ani = hn

kn
, where h�2 = 0; k�2 = 0; h�1 = 1; k�1 = 0, and for i � 0,

hi = aihi�1 + hi�2 and ki = aiki�1 + ki�2.

The proof is by induction. This, in turn implies:
For every i � 0, hiki�1 � hi�1ki = (�1)i�1 (which implies that (hi; ki) = 1), and
hiki�2 � hi�2ki = (�1)iai .
Note: None of these formulas actually require that the ai's be integers.

for x = ha0; a1; : : : ; an�1; an + xni = ha0; a1; : : : ; an�1; an; 1

xn
i, if we set

ha0; a1; : : : ; an�1; ani = rn,
then these formulas imply that

r2n < r2n+2 and r2n�1 > r2n+1 for every n, and [ r2n�1 � r2n, not r2n � r2n�1] =
1

k2n�1k2n
And since the numerator of

x� ha0; a1; : : : ; an�1; ani = ha0; a1; : : : ; an�1; an + xni � ha0; a1; : : : ; an�1; ani,
we can compute, is xn(hn�1kn�2 � hn�2kn1) (and the denomenator is positive), we have
that r2n < x < r2n+1. So since r2n � r2n�1 ! 0 as n ! 1, we �nd that rn ! x, In
particular, jx � rn�1j < jrn�1 � rnj = 1=(kn�1kn) for every n. This implies that if the
xn are never 0 (i.e., the continued fraction process is really an in�nite one), then since
0 < jkn(x� rn)j = jknx� hnj < 1=kn�1, we �nd that x is not rational.

This last observation requires us to know that the kn are getting arbitrarily large. But note
that since ai � 1 for every i > 0, k�1 = 0; k0 = 1, and ki = aiki�1 + ki�2 � ki�1 + ki�2
for every i � 1, we can see by induction that kn � the nth Fibonacci number (which is
de�ned by Fi = Fi�1 + Fi�2), and the Fibonacci numbers grow very fast!

Based on these facts, we denote x = lim
n!1

ha0; : : : ; ani = ha0; a1; : : :i . Then
ha0; a1; : : :i = a0 +

1

ha1; a2; : : :i
which in turn implies that:

If ha0; a1; : : :i = hb0; b1; : : :i, then ai = bi for all i.

If 1 � b < kn, then jx � a

b
j � jx � hn

kn
j for all integers a; in fact if 1 � b < kn+1, then

jbx� aj � jknx� hnj for all integers a.
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If x =2 Q and a; b 2 Z, with jx� a

b
j < 1

2b2
, then

a

b
=

hn
kn

for some n.

Repeating continued fraction expansions: A continued fraction ha0; a1; : : :i will repeat (i.e,
an = an+m for all n � N) precisely when xn�1 = xn+m�1, since from (**) above, all of the
calculations of the partial quotients, starting from some �xed number, will depend only on
that �xed number. A real number x has a repeating continued fraction expansion if and
only if x is an (irrational) root of a quadratic equation, what we call a quadratic irrational.
In particular,

For any non-square positive integer n,
p
n+ bpnc = h2a0; a1; : : : ami is purely periodic. This

implies that
p
n = ha0; a1; : : : am; 2a0i

Pell's Equation.

It turns out that the continued fraction expansion of
p
n can help us �nd the integer solutions

x; y of the equation

(***) x2 � ny2 = N

for �xed values of n and N . This equation is known as Pell's equation.

First the less interesting cases. If n < 0, then any solution to N = x2 � ny2 � x2 + y2

has jxj; jyj � p
N , which can be found by inspection. If n = m2 for some m, then N =

x2 �m2y2 = (x�my)(x+my), so x�my; x+my both divide N , so, e.g., their sum, 2x
divides N2. We can then �nd all possible x, and so all solutions, by inspection. We now
focus on �nding solutions for n � 1 not a perfect square.

p
n is therefore irrational.

Then if 1 � N � p
n is not a perfect square, then N = x2 � ny2 implies that

jpn� x

y
j = N

jx+p
nyj � jyj <

N

2
p
ny2

<
1

2y2
, so

x

y
=

hm
km

for some m.

(The same, it turns out, is true for �pn � N � �1.) But which m?p
n = ha0; a1; : : : am; 2a0i means that

p
n = ha0; a1; : : : am; a0+

p
ni. In general, at any point

where we stop computing the continued fraction of
p
n, we �nd that

p
n = hb0; b1; : : : bs;

p
n+ a

b
i, where 1

xs
=

p
n+ a

b
(so a and b take on only �nitely many values, because xs does). But then we can compute
that

p
n =

(
p
n+a

b
)hs + hs�1

(
p
n+a

b
)ks + ks�1

, which implies that h2s � nk2s = b(hsks�1 � hs�1ks) = (�1)s�1b .

In particular, solutions to x2�ny2 = 1 exist, because b = 1 occurs as the denomenator of xi
for i = m+ 1; 2m+ 1; 3m+ 1; : : : . These are either all odd (if m is even), or every other
one is odd. For these values, i�1 is even, so h2i �nk2i = b(hiki�1�hi�1ki) = (�1)i�1b = 1
.

There is an alternative approach to generating solutions to (***). If we know that x2�ny2 =
N and x20 � ny20 = 1, then

(x2 � ny2)(x20 � ny20)
m = N = (x�p

ny)(x0 �
p
ny0)

m(x+
p
ny)(x0 +

p
ny0)

m

But (x�pny)(x0�
p
ny0)

m = A�pnB for some A;B, and then (x+
p
ny)(x0+

p
ny0)

m =
A+

p
nB (because of the properties of conjugates of quadratic irrationals). Then

(A�p
nB)(A�+

p
nB) = A2 � nB2 = N .
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Diophantine Equations.

Equations like x2� 17y2 = 3, for which we seek solutions with x; y 2 Z form a class of equa-
tions called Diophantine Equations. Typically, we have two goals: decide if the equation
has a solution; if it does, then we wish to describe all of the solutions.

In principle, a Diophantine equation may really be a system of equations:
f1(x1; : : : ; xn) = 0; : : : ; fm(x1; : : : ; xn) = 0 ; in theory, these can be replaced by one equation
[f1(x1; : : : ; xn)]

2 + � � � [fm(x1; : : : ; xn)]2 = 0, although this rarely makes �nding a solution
easier!

For example, by the Euclidean algorithm, the Diophantine equation

ax+ by = c

has a solution, (a; b)jc. The Euclidean algorithm will provide a solution to ax0+bx0 = (a; b);
then if a = a0(a; b), b = b0(a; b), c = c0(a; b), then the solutions to ax + by = c are
x = c0x0 + nb0; y = c0y0 � na0 for n 2 Z .

As another example, for the equation ax2+ by = c to have a solution, aX + bY = c must; so
we need (a; b)jc. But this is in general not suÆcient; treating the original equation mod b,
we need ax2 � c (mod b), which may not have a solution. If aA � 1 (mod b), for example,
then we need Ac to be a square, mod b; Euler's criterion can help us decide if it is.

Pythagorean triples: Solutions to x2 + y2 = z2. If (x; y; z) is a Pythagorean triple, then
if (x; y) = d > 1 then djz, as well, so (x=d)2 + (y=d)2 = (z=d)2 is a solution, as well. We
therefore look for primitive solutions, i.e., those with (x; y) = (y; z) = (x; z) = 1. BY
looking at the equation mod 4, we can see that z must be odd, and x and y have opposite
parity; let us assume that x is even. Then by rewriting the equation as x = 2u, and
x2 = z2 � y2 = (z + y)(z � y), we �nd that

u2 = (
z + y

2
)(
z � y

2
); but (

z + y

2
;
z � y

2
) = 1, so each must be a perfect square r2; s2, imply-

ing that z = r2 + s2, y = r2 � s2, and x = 2rs . (Note that r ands must have opposite
parity, so that y and z are odd.) Conversely, we can compute that such values of x; y; z
satisfy x2 + y2 + z2, so

(x; y; z) = (2rs; r2� s2; r2 + s2) , (r; s) = 1, r� s odd, gives all primite Pythagorean triples.

The above argument used: (a; b) = 1 and ab = c2 implies a = u2; b = v2 for some u; v .

By contrast, the equation x4 + y4 = z2 has no solution with x; y; z 2 Z and xyz 6= 0;
consequently, x4 + y4 = z4 also has no solutions. The proof is by in�nite descent; if the
equation has a solution, then we show that it has another solution with smaller (positive)
values. By the well-orderedness of the natural numbers, this cannot continue forever.

Local versus global solutions.

If the equation f(x1; : : : ; xn) = 0 has a solution with xi 2 Z for all i, then it is certainly the
case that f(x1; : : : ; xn) = 0 has a solution with xi 2 R for all i (use the same solution!).
Similarly, the equation f(x1; : : : ; xn) � 0 (mod N) has a solution for every N . Solutions
to these latter equations are called local solutions; by analogy, a solution to our original
Diophantine equation is then called a global solution. This implies that if we can show
that an diophantine equation has no local solution for some n or for R, then the original
equation has no global solution.
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For example, by working mod 5, we can show that the equation 2x2 + 5y2 = 9z2 has
no solutions over the integers, since it has no primitive solutions. Any such
primitive solution would also solve x2 � 27z2 � 2z2. If 5jz then 5jx, so 25j5y2, so
5jy, and we do not have a primitive solution. Then we may invert z mod 5;
�nding w with zW � 1 (mod 5) and multiplying both sides of our equation with
w2, we get (xw)2 � 2 (mod 5); but a quick check of all representatives mod 5
(like 1,2,3,4), or using Euler's criterion, we �nd that 2 is not a square mod 5.

There are, however, equations which have all types of local solutions, but no
global one; the �rst such equation found was x4 � 17 = 2y2 .

Geometric solutions.

For equations such as x2 + 10y2 = 19z2 where we know one solution (like (3,1,1)),
we can �nd all solutions using a geometric process. Setting X = x=z, Y = y=z,
our equation becomes

(****) X2 + 10Y 2 = 19 (in this case, an ellipse)

for which we know one (rational) solution; (3,1). Our goal is now to �nd all other
rational solutions (the denomenator will be our z). But if we imagine having
another rational solution (a; b), then the line through (3; 1) (in our case) and
(a; b) will have rational slope. If we take the equation for this line and plug it
into (****), we get a quadratic equation with (because of the rational slope)
rational coeÆcients, for which we know one, rational, solution (in our case,
X = 3). The other solution must therefore be rational, and the corresponding
point on the line then has rational coordinates. In our example, this procedure
looks like

Y = r(X�3)+1, so x2+10(r(X�3)+1)2 = 19, i.e., (X2�9)+10r2(X�3)2+20r(X�3) = 0,
i.e., (X�3)(X+3+10r2X�30r2+20r) = 0. So X = 3 or (10r2+1)X�(30r2�20r�3) = 0,
i.e., (setting r = a=b)

X =
30r2 � 20r � 3

10r2 + 1
=

30a2 � 20ab� 3b2

10a2 + b2

so x = 30a2 � 20ab� 3b2, z = 10a2 + b2 and (by plugging into the equation for the
line) y = �(10a2 + 6ab� b2) provide solutions.

Sums of four squares.

For every n 2 N, there are x; y; z; w 2 Z so that x2 + y2 + z2 + w2 = n.

Elements of the proof:

(x21 + y21 + z21 + w2
1)(x

2
2 + y22 + z22 + w2

2) =
(x1x2 + y1y2 + z1z2 + w1w2)

2 + (x1y2 � x2y1 + z2w1 � z1w2)
2 +

(x1z2 � x2z1 + y1w2 � w1y2)
2 + (x1w2 � x2w1 + y2z1 � y1z2)

2

so we may focus on primes p. p = 2 = 12 + 12 + 02 + 02, so focus on odd primes.
Then

0 � x; y � (p � 1)=2 and x 6= y implies x2 6� y2 (mod p), so for any a, x2 and
a� y2, with 0 � x; y � (p�1)=2 must have a value, mod p, in common (otherwise
x2+ y2� a takes on p+1 di�erent values, mod p). So x2+ y2 � �1 (mod p) has a

5



solution. Then x2 + y2 + 12 + 02 = Mp for some M ; with the restrictions on x; y,
we have M < p. Choose the smallest positive M with Mp = x2+ y2+ z2 +w2. M
is odd, since otherwise (after renaming the variables to group them by parity)

M

2
p = (

x� y

2
)2 + (

x+ y

2
)2 + (

z � w

2
)2 + (

z + w

2
)2

If M > 1, then choose �M

2
� x1; y1; z1; w1 � M

2
with x � x1 (mod M), etc. then

x21 + y21 + z21 +w2
1 � x2 + y2 + z2 +w2 � 0 (mod M), so x21 + y21 + z21 +w2

1 = NM with
(from the restrictions on x1, etc.) N < M . Then

NM2p = (x21+ y21 + z21 +w2
1)(x

2+ y2+ z2+w2) = a sum of four squares with, we can
compute, every term a multiple of M ! Dividing through by M2, we �nd that
Np is a sum of four squares, with N < M , contradicting the choice of M . So
M = 1, and we are done.
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