
Math 445

Handy facts since the second exam

Don't forget the handy facts from the �rst two exams!

Rational points on curves

For more general curves, de�ned by polynomials f(x; y) = 0 of higher degree, looking at how
lines meet the curve can provide a wealth of information.

Notation: Cf (R) = f(x; y) 2 R2 : f(x; y) = 0g For the most part, we will focus on cubic

polynomials f , whose highest degree monomial is x3; x2y; xy2, and/or y3.

If L is a line (generically, de�ned by an equation ax + by + c = 0, a or b 6= 0), which we
usually write y = mx + b = L(x) (if not vertical: x = c), any point on both L and Cf (R)
satis�es p(x) = f(x;mx+ b) = 0. This is a polynomial of degree d = the (total) degree of
f . It therefore has exactly d (complex) roots (counting multiplicity), unless it is identically
0. So if L meets Cf (R) in more than d points (counting multiplicity; we will consider this
shortly), then p � 0, i.e., P 2 L implies P 2 Cf (R), i.e., L � Cf (R). Even more, if L
is de�ned by L(x; y) = ax + by + c = 0 and L meets Cf (R) in more than d points, then
f(x; y) = L(x; y)K(x; y) for some polynomial K (of degree d� 1).

More generally, we can re�ne this by considering points in Cf (R) with multiplicity. In the
one-variable case, a point a is a solution to p(x) = 0 with multiplicity m if a is a root of
both p and the �rstm�1 derivatives of p (this is equivalent to p(x) having factor (x�a)m).
In the multivariable case, P = (a; b) is a root of f(x; y) with multiplicity m if P is a root
of both f and every partial derivative (@=@x)i(@=@y)j(f) for i+ j < m. For the most part
we will worry about multiplicity 2, i.e., P is a root of f; @f=@x, and @f=@y. Such a point
is called a double point of Cf (R). More generally, a point of a curve Cf (R) of multiplicity
greater than 1 is called a singular point. A curve with no singular points is called smooth.

As with quadratic curves, we can use knowledge of some rational points in Cf (R), for f
a cubic polynomial, to �nd more, using lines. The idea now is to use the line through
two solutions to �nd a third. Such a line will have rational slope, given by an equation
y = L(x) = mx + b. If we look to solve the polynomial p(x) = f(x; L(x)) = 0, our two
points provide two solutions; the third root (which we can �nd by factoring) will give us
the third solution (plugging into y = L(x) to recover its y-value). This is known as the
chord method.

If the cubic curve Cf (R) has a double point P , we don't even need a second point; P will serve
for both (so long as it has rational coordinates!). Even line with rational slope through
P will give a third, rational, point; in fact, every rational solution can be found this way
(remembering the line with in�nite slope...).

If we only know one rational point P = (a; b) in Cf (R), we can still �nd a line for which
p(x) = f(x; L(x)) = 0 has a double root; the tangent line to Cf (R), is de�ned by the
equation fx(P )(x�a)+fy(P )(y�b) = 0, which implies (via the chain rule) p(a) = p0(a) = 0,
i.e., a is a double root. [If f has rational coeÆcients, this line has rational slope.] The third
root then gives us a new rational point in Cf (R). This method is known as the tangent

method.
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Projective space.

There are some situations when this approach seems to break down; for example with an
equation like

f(x; y) = y2 � (x3 � 5x+ 3)

the line through the solutions (1; 1) and (1;�1) (i.e., the vertical line x = 1), meets Cf (R)
in only two points. [Plug in x = 1 to verify this.] It is going to be very important to
us, however, that this approach not break down, and so we will take the (at the moment
somewhat irrational) step of \inventing" new solutions, to cover these cases. The idea is
to think of our solutions as living in a larger space; real projective space P2(R). The idea
is to �rst projectivize our equation, replacing f(x; y) = 0 with the homogeneous equation

F (X;Y; Z) = Z3f(X=Z; Y=Z) = 0

For example, our equation becomes Y 2Z � (X3 � 5XZ2 + 3Z3) = 0. Such an equation
has the property that (X;Y; Z) is a solution implies (aX; aY; aZ) for any a, i.e., solutions
are \really" lines of solutions through the origin. P2(R) is nothing more than this; it
is the set of all lines through the origin in R3 ; since exact values of the coordinates are
unimportant, we write points in P2(R) as X : Y : Z rather than (X;Y; Z). Since any
solution to F (X;Y; Z) = 0 can be replaced with a constant multiple, any solution with
Z 6= 0 has a corresponding solution with Z = 1. But if X : Y : 1 is a solution, then
f(X;Y ) = 0, i.e., it gives an ordinary solution in Cf (R). The solutions with Z = 0 do not
have any corresponding solutions in Cf (R), as we have originally interpreted it; they are
our extra solutions \at in�nity" in P2(R). They are found by projectivizing f , and setting
Z = 0. In our example above, the point 0 : 1 : 0 is a solution. It is the third point on our
vertical line. It can in fact be interpreted as the vertical line; points in R2 correspond to
lines X : Y : Z with Z 6= 0, by looking at where the line meets the plane Z = 1 in R3 . The
points X : Y : 0, on the other hand, are lines in the XY -plane in R3 , with slope Y=X. So
0 : 1 : 0 corresponds to the vertical line in the XY -plane. In general, a : b : 0 is the point
in P2(R) where all lines of slope b=a meet!

Elliptic curves.

The type of curve where these tools prove the most useful are the elliptic curves. A cubic
curve Cf (R) is called elliptic if it has no singular point (in P2(R)), and f has no linear
factor (i.e., Cf (R) contains no line). The quickest test for this is to verify both of these
properties over the complex numbers C ; and for this, we have the useful fact that

The polynomial f(x; y) = y2 � q(x) (q cubic) de�nes an elliptic curve over C if and only if q
has no repeated root (over C ). For such a curve, we have that any line through two points
A;B of Cf (R) intersects Cf (R) in a unique third point (in P2(R)), which �nd as above.
We denote this third point AB. [When A = B, it is understood that the line meant is the
tangent line to Cf (R) at A.] But this turns out to be, by itself, not terribly useful as a
binary operation; it is, for example, not associative. [It has the useful properties, however,
that AB=BA, and AB=C implies AC=B and BC=A.] To make a useful operation, we
proceed as follows.

Pick any point in Cf (R); call it 0. Then given A;B 2 Cf (R), we �rst �nd AB as above, and
then �nd 0(AB), and call it 0(AB) = A + B. This product, it turns out, is much more
well behaved:
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(1) A+B = B + A for all A;B 2 Cf (R)
(2) A+ 0 = A for all A 2 Cf (R)
(3) For every A 2 Cf (R), there is a unique B 2 Cf (R) with A+ B = 0

[In fact, B = A(00) .]

(4) For all A;B;C 2 Cf (R), (A+ B) + C = A+ (B + C)

The last fact is the most involved to verify; it use the fact:

If f and g are cubic polynomials, f has no linear factor, P1; : : : ; P9 are distinct points in
Cf (R) \ Cg(R) and P1; P2; P3 lie in a line L, then there is a quadratic polynomial q(x; y)
so that P4; : : : ; P9 2 Cq(R).

[Typically, six points in the plane do not lie on a quadratic (other than the zero polynomial).]

When we apply this to the points B;BC;C;AB; 0; 0(AB); A; 0(BC); (0(AB))C, and the poly-
nomial g(x; y) = L1(x; y)L2(x; y)L3(x; y), where the line L1 contains B;AB;A, L2 contains
BC; 0; 0(BC), and L3 contains C; 0(AB); (0(AB))C, we �nd that the last six points lie on
a quadratic. But the �rst three of these lie on a line, and so the last three do, as well.
This implies that

(0(AB))C = A(0(BC))

and so (A+ B) + C = 0((0(AB))C) = 0(A(0(BC))) = A + (B + C). This argument really
only applies if the nine points above are actually distinct. When they are not, we perturb
the points 0; A;B;C slightly to make the nine points distinct, and apply \continuity".

Taken together, the four properties (1) through (4) tell us that Cf (R) is an abelian group

under +. If we choose 0 to be a rational point (i.e., 0 2 Cf (Q)), then Cf (Q ) forms a
subgroup of Cf (R).

We can see that the actual choice of 0 certainly e�ects the de�nition of the addition, but it
does not have a big e�ect on the structure of the resulting group; if we choose a di�erent
point 00 and de�ne A�B = 00(AB), then A�B = A+B� 00, and therefore the function
� : (Cf (R);�) ! (Cf (R);+) de�ned by �(A) = A� 00, is an isomorphism of groups.

Focusing on elliptic curves of the form f(x; y) = y2� (x3� ax� b) (which is all we will need
for our applications), and using the point 0 : 1 : 0 at in�nity as 0, we can �nd explicit
formulas for the addition of points. If A = (x1; y1) and B = (x2; y2), then (noting that
0(x; y) = (x;�y)) A+ B = 0(AB) will equal

(m2 � x1 � x2;�(y1 +m(m2 � 2x1 � x2)))

where m =
y2 � y1
x2 � x1

, if x1 6= x2

0

if x1 = x2 and y1 6= y2
(M2 � 2x1;�(y1 +M(M2 � 3x1)))

where M =
3x21 � a

2y1
, if x1 = x2 and y1 = y2

Factoring integers using elliptic curves

Elliptic curves have turned out to have many uses in the \real" world. We will look at one
of them: providing the (to date) fastest known method to factor large integers. It uses the
group operation on Cf (Q) , and is based on the fact that for a �nite group G, with order
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n, every element g 2 G satis�es n � g = 0.

Our approach, the Elliptic Curve Method, is modelled on another factoring algorithm due
to Pollard, called the Pollard (p � 1)-test. The idea is that if N is a (large) integer, with
prime factor p, then by Fermat, for any a relatively prime to p, pjap�1�1, and so the g.c.d.
(ap�1�1; N) > 1. As usual, the problem is that we don't know p, but for this test we guess
that p� 1 consists of a product of fairly small primes, and test (an � 1; N) for n a (large)
product of fairly small numbers, in an e�ort to �nd a g.c.d. that is both greater than 1 and
less than N , giving us a proper factor of N . In practice, we start with a randomly chosen
a, and a sequence of fairly small numbers rn, like rn = n. We then form the sequence
a1 = a, a2 = ar11 = ar1 , a3 = ar22 = ar1r2 , and inductively, ai+1 = arii = ar1���ri . We
then compute gi = (ai � 1; N). Noting that ai � 1jai+1 � 1 for every i, and so gijgi+1 for
every i, we typically, compute the g.c.d.'s only occasionally (since we expect to get gi = 1
for awhile). This process will always eventually stop, since for any prime divisor p of N ,
p � 1 will divide r1 � � � rn = 1 � 2 � � �n for some n, so gn > 1. The �rst time this happens,
however, it might be that gn = N , and so the test fails; we then restart with a di�erent a.
The typical amount of time it take for this method to �nd a factor is on the order of the
size of the smallest among the set of largest prime factors of p� 1, where p ranges among
all of the prime factors of N . The problem: this could be fairly large!

The elliptic curve method attempts to get around this problem. The basic idea behind the
method above is that we are attempting to express the identity element in Z�

p (the group
of units of Zp), as a power of some number a, where the power is a product of fairly small
numbers. [The fun part is that we are doing this without actually choosing p �rst!] The
problem is that we are not guaranteed a p where products of small numbers will work.
The ECM takes this problem and translates it into a framework where it is much more
likely to work, using elliptic curves mod p.

The basic idea is to take the machinery we have developed for computing on elliptic curves,
and do all of the calculations mod p, for some (unknown!) prime dividing N . In practice,
this really means we do the calculations mod N . The basic fact is that, using the formulas
for addition we have above (and really, it works in general), we can work out an addition
formula for points in what we choose to call Cf (Zp) . The formulas involve division, but
mod p, we simply carry these out by instead multiplying by the invers (which we �nd by
the Euclidean algorithm). We still need to know that this form of addition on Cf (Zp) gives
us a group; but from the formulas, the needed properties can be veri�ed directly (including
associativity!).

To implement the ECM to �nd a factor of an integer N , we pick an elliptic curve Cf (Zp) by
choosing values for a and b, and a point A on the curve. [Usually this is done the other
way around; pick a point you want on the curve, such as A = (1; 1), and choose the values
of a and b accordingly.] Cf (Zp) is a group of some �nite (but unknown) order; the idea is
that we expect that for some choices of a and b, it has order a product of small primes,
and so a calculation like the one in the Pollard (p� 1)-test will quickly succeed. But this
is where the fun starts!

The idea is to compute high multiples r1 � � � rnA of a point; we do this as we dealt with high
powers long ago, by repeated doubling, and then adding together the necessary powers of
2 to get r1 � � � rn. Our calculations are supposed to be carried out mod p, but they can't
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be; we don't know p. So instead we carry them out mod N (while pretending we are
computing in Cf (Zp)). But this will not always work; not every integer has an inverse mod
N . So in our calculations we might occasionally fail to be able to compute a step. But
this is a good thing! We will fail, because the quantity we need to invert, x2 � x1, is not
relatively prime to N , i.e., (x2 � x1; N) > 1 (or, when doubling, ((2y1); N) > 1). Unless
this is a multiple of N (i.e., since we are computing mod N , x2 = x1 or N jy1), we have
found what we sought; a proper factor of N ! In point of fact, this is what the method is
designed to do; we don't even want to �nd the order of A in Cf (Zp), since the order of this
group really has no relation to N , it can, in fact, be any number between p+1� 2

p
p and

p + 1 + 2
p
p. What we really want to do is to discover that we can't compute the order,

because the formulas break down and �nds a factor of N , before the computation �nishes.
The point is that by varying the curve, we should relatively quickly stumble across one
for which Cf (Zp) would have the kind of order that would allow us to compute it, if the
computation were not going to break down. The basic idea is to �nd a curve where the
calculation breaks down fairly quickly, and so we typically limit the size of r1 � � � rn (to
around

p
N , so it is at least the expected size of Cf (Zp) for p the smallest prime dividing

N), and vary the curve.
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