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Fermat numbers 22" + 1 : known prime only for n = 0,1,2,3,4 . Part of the interest in
them is

Fact (Gauss): A regular n-gon can be constructed by compass and straight-edge <
n = 2Fd where d is a product of distinct Fermat primes.

So the fact that we know of only 5 Fermat primes means we only know of 32 regular
n-gons with an odd number of sides that can be so constructed. If there is another one,
it has more than a billion sides!

Lucas’ Theorem has a rather strong converse:

Theorem: If p is prime, then there is an a with (a,p) = 1 so that for every prime ¢ with
gn —1, o # 1 (mod p) .

Note that a?~! = 1 (mod p) is always true, because p is prime. In effect, what this
theorem says is that ord,(a) = p—1 (which in the language of groups says that the group
of units in Z, is cyclic, when p is prime). In order to prove this theorem, we need a bit

of machinery:

Lagrange’s Theorem: If f(x) is a polynomial with integer coefficients, of degree n, and
p is prime, then the equation f(z) = 0 (mod p) has at most n mutually incongruent
solutions, unless f(x) =0 (mod p) for all .

To see this, do what you would do if you were proving this for real or complex roots;
given a solution a, write f(z) = (z — a)g(x) + r with r=constant (where we understand
this equation to have coefficients in Z,) using polynomial long division. This makes sense
because Z, is a field, so division by non-zero elements works fine. Then 0 = f(a) =
(a—a)g(a)+r =r means r = 0in Z,, so f(z) = (x —a)g(x) with ¢g(z) a polynomial with
degree n — 1 . Structuring this as an induction argument, we can assume that g(z) has at
most n — 1 roots, so f has at most (a and the roots of g, so) n roots, because, since p is
prime, if f(b) = (b—a)g(b) =0 (mod p), then either b —a = 0 (so a and b are congruent
mod p), or g(b) = 0, so b is among the roots of g.

This in turn leads us to

Corollary: If p is prime and d|p — 1 , then the equation ¢ — 1 = 0 (mod p) has exactly d
solutions mod p.

This is because, writing p—1 = ds, f(z) = 2P~!—1 = 0 has exactly p—1 solutions (namely,
1 through p — 1), and 27! = (2¢ — 1) (2%~ 4 2962 4o 429 1 1) = (27 — 1)g(2) .
But g(x) has at most d(s — 1) = (p — 1) — d roots, and z% — 1 has at most d roots, and
together (since p is prime) they make up the p—1 roots of f. So in order to have enough,
they both must have exactly that many roots.

This in turn will allow us to find our a ....



