

Math 445 Number Theory

September 17, 2004

Fermat numbers $2^{2^n} + 1$; known prime only for $n = 0, 1, 2, 3, 4$. Part of the interest in them is

Fact (Gauss): A regular n -gon can be constructed by compass and straight-edge $\Leftrightarrow n = 2^k d$ where d is a product of distinct Fermat primes.

So the fact that we know of only 5 Fermat primes means we only know of 32 regular n -gons with an odd number of sides that can be so constructed. If there is another one, it has more than a billion sides!

Lucas' Theorem has a rather strong converse:

Theorem: If p is prime, then there is an a with $(a, p) = 1$ so that for every prime q with $q|n - 1$, $a^{\frac{p-1}{q}} \not\equiv 1 \pmod{p}$.

Note that $a^{p-1} \equiv 1 \pmod{p}$ is always true, because p is prime. In effect, what this theorem says is that $\text{ord}_p(a) = p - 1$ (which in the language of groups says that the group of units in \mathbb{Z}_p is cyclic, when p is prime). In order to prove this theorem, we need a bit of machinery:

Lagrange's Theorem: If $f(x)$ is a polynomial with integer coefficients, of degree n , and p is prime, then the equation $f(x) \equiv 0 \pmod{p}$ has at most n mutually incongruent solutions, unless $f(x) \equiv 0 \pmod{p}$ for all x .

To see this, do what you would do if you were proving this for real or complex roots; given a solution a , write $f(x) = (x - a)g(x) + r$ with $r = \text{constant}$ (where we understand this equation to have coefficients in \mathbb{Z}_p) using polynomial long division. This makes sense because \mathbb{Z}_p is a *field*, so division by non-zero elements works fine. Then

$0 = f(a) = (a - a)g(a) + r = r$ means $r = 0$ in \mathbb{Z}_p , so $f(x) = (x - a)g(x)$ with $g(x)$ a polynomial with degree $n - 1$. Structuring this as an induction argument, we can assume that $g(x)$ has at most $n - 1$ roots, so f has at most (a and the roots of g , so) n roots, because, *since p is prime*, if $f(b) = (b - a)g(b) \equiv 0 \pmod{p}$, then either $b - a \equiv 0$ (so a and b are congruent mod p), or $g(b) = 0$, so b is among the roots of g .

This in turn leads us to

Corollary: If p is prime and $d|p - 1$, then the equation $x^d - 1 \equiv 0 \pmod{p}$ has *exactly* d solutions mod p .

This is because, writing $p - 1 = ds$, $f(x) = x^{p-1} - 1 \equiv 0$ has exactly $p - 1$ solutions (namely, 1 through $p - 1$), and $x^{p-1} = (x^d - 1)(x^{d(s-1)} + x^{d(s-2)} + \dots + x^d + 1) = (x^d - 1)g(x)$. But $g(x)$ has *at most* $d(s - 1) = (p - 1) - d$ roots, and $x^d - 1$ has at most d roots, and together (since p is prime) they make up the $p - 1$ roots of f . So in order to have enough, they both must have *exactly* that many roots.

This in turn will allow us to find our a