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Theorem: If p is prime, the equation 22 = —1 (mod p) has a solution < p = 2 or p = 1 (mod 4) . Last time did
<; now we do: If p=3 (mod 4) is prime, then 22 = —1 (mod p) has no solution. This is really rather quick. If
2?2 = —1 (mod p) , then since by FLT 2P~! =1 (mod p), we have, mod p,

1= gP~ 1 = gUk+3) =1 — k42 — g20@k+1) — (22)2k+1 = (_1)2k+1 = 1 50 1 = —1 (mod p) . i.e., p|2 , which is absurd.

With this in hand, we can show: Proposition: If n = a> +b* , pjn , and p = 3 (mod 4) , then p|a and pl|b .

If not, then either p fa or p fb, say p fa . Then (a,p) = 1, so there is a z with az = 1 (mod p) . But then since p|n,
pla® + b2, s0 a® +b*> =0 (mod p) . Then 1+ (b2)? = (az)? + (bz)? = 22(a® + b?) = 220 = 0 (mod p) , so z = bz satisfies
72 +1=0 (mod p) , ie., 22 = —1 (mod p) , a contradication. So p|a and pl|b .

(*) This means that p?|a? and p?[b? , so p?|a® + b?> = n , and (n/p?) = (a/p)* + (b/2p)? . This will be very significant
shortly! The final peice of the puzzle is:

Proposition: If p =1 (mod 4) and p is prime, then p = a® + b? for some integers a , b .

To see this, set k = [/p] = the largest integer < p . Since p is prime, ,/p is not an integer, so k < \/p < k+1 . Because

p =1 (mod 4) , there is an x with 22 = —1 (mod p) . Now look at the collection of integers  u + zv for 0 < u < k
and 0 < v < k . Since there are (k + 1)2 > p of them, at least two of them are congruent mod p; u; + vy = us + xvs
Then u; — us = v — 201 = x(vy — v1) , 50 (U1 — u2)? = 2%(ve — v1)? = —(vo — v1)? . Setting a = u; — up and

b = vy — v1 , this means 10|a2 + b2 . But since either u; # us or v # vy , a® + b% > 0 . Also, since 0 < uy,uz,v1,v2 < k ,
luy — ugl, [ve —v1| <k ,s0a?+b* <k?+k?=2k%><2p. So 0 < a?+b? < 2p and is divisible by p ; so a® +b%> =p , as
desired.

So now we know that (1) the product of two sums of two squares is a sum of two squares, (2) 2 and any prime = 1
(mod 4) is a sum of two squares, and (3) and prime = 3 (mod 4) which divides a® + b? divides both a and b. Putting
these together, we can completely characterize which numbers can be expressed as a?® + b? :

Theorem: If n = kalfl coopFrg™ - g™ is the prime factorization of n, where p; = 1 (mod 4) and ¢; = 3 (mod 4) for
every i , then n = a? + b? for some integers a,b < m; is even for every i .

The idea: use (*) above to show that if n = a® + b? then each of the primes ¢; can be divided out two at a time as
(n/q?) = (a/q;)®+ (b/q;)? , until there are none left, showing that their exponents are all even. Conversely, (by induction)
2Fpit - - pkr is a sum of two squares, since each factor is, and then since the remaining factor ¢** - -- ¢ = q%ul o qRUs =
(i -+ q%)* 4 0? is a sum of squares, the product, n , is a sum of two squares.

So, for example, since we know p = 61 - 2285652 4 1 is prime and (as one of our class members pointed out!) 4|2285652

p =1 (mod 4) , this number can be expressed as the sum of two squares. Care to figure out which ones?
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