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Theorem: If p is prime, the equation x2 ≡ −1 (mod p) has a solution ⇔ p = 2 or p ≡ 1 (mod 4) . Last time did
⇐; now we do: If p ≡ 3 (mod 4) is prime, then x2 ≡ −1 (mod p) has no solution. This is really rather quick. If
x2 ≡ −1 (mod p) , then since by FLT xp−1 ≡ 1 (mod p), we have, mod p,
1 ≡ xp−1 = x(4k+3)−1 = x4k+2 = x2(2k+1) = (x2)2k+1 ≡ (−1)2k+1 = −1, so 1 ≡ −1 (mod p) . i.e., p|2 , which is absurd.
With this in hand, we can show: Proposition: If n = a2 + b2 , p|n , and p ≡ 3 (mod 4) , then p|a and p|b .
If not, then either p � |a or p � |b , say p � |a . Then (a, p) = 1, so there is a z with az ≡ 1 (mod p) . But then since p|n,
p|a2 + b2, so a2 + b2 ≡ 0 (mod p) . Then 1 + (bz)2 = (az)2 + (bz)2 = z2(a2 + b2) ≡ z20 = 0 (mod p) , so x = bz satisfies
x2 + 1 ≡ 0 (mod p) , i.e., x2 ≡ −1 (mod p) , a contradication. So p|a and p|b .
(*) This means that p2|a2 and p2|b2 , so p2|a2 + b2 = n , and (n/p2) = (a/p)2 + (b/2p)2 . This will be very significant
shortly! The final peice of the puzzle is:
Proposition: If p ≡ 1 (mod 4) and p is prime, then p = a2 + b2 for some integers a , b .
To see this, set k = �√p� = the largest integer ≤ p . Since p is prime,

√
p is not an integer, so k <

√
p < k + 1 . Because

p ≡ 1 (mod 4) , there is an x with x2 ≡ −1 (mod p) . Now look at the collection of integers u + xv for 0 ≤ u ≤ k
and 0 ≤ v ≤ k . Since there are (k + 1)2 > p of them, at least two of them are congruent mod p; u1 + xv1 ≡ u2 + xv2

. Then u1 − u2 ≡ xv2 − xv1 = x(v2 − v1) , so (u1 − u2)2 ≡ x2(v2 − v1)2 = −(v2 − v1)2 . Setting a = u1 − u2 and
b = v2 − v1 , this means p|a2 + b2 . But since either u1 �= u2 or v1 �= v2 , a2 + b2 > 0 . Also, since 0 ≤ u1, u2, v1, v2 ≤ k ,
|u1 − u2|, |v2 − v1| ≤ k , so a2 + b2 ≤ k2 + k2 = 2k2 < 2p . So 0 < a2 + b2 < 2p and is divisible by p ; so a2 + b2 = p , as
desired.
So now we know that (1) the product of two sums of two squares is a sum of two squares, (2) 2 and any prime ≡ 1
(mod 4) is a sum of two squares, and (3) and prime ≡ 3 (mod 4) which divides a2 + b2 divides both a and b. Putting
these together, we can completely characterize which numbers can be expressed as a2 + b2 :
Theorem: If n = 2kpk1

1 · · · pkr
r qm1

1 · · · qms
s is the prime factorization of n, where pi ≡ 1 (mod 4) and qi ≡ 3 (mod 4) for

every i , then n = a2 + b2 for some integers a, b ⇔ mi is even for every i .
The idea: use (*) above to show that if n = a2 + b2 then each of the primes qi can be divided out two at a time as
(n/q2

i ) = (a/qi)2 +(b/qi)2 , until there are none left, showing that their exponents are all even. Conversely, (by induction)
2kpk1

1 · · · pkr
r is a sum of two squares, since each factor is, and then since the remaining factor qm1

1 · · · qms
s = q2u1

1 · · · q2us
s =

(qu1
1 · · · qus

s )2 + 02 is a sum of squares, the product, n , is a sum of two squares.

So, for example, since we know p = 61 · 2285652 + 1 is prime and (as one of our class members pointed out!) 4|2285652 so
p ≡ 1 (mod 4) , this number can be expressed as the sum of two squares. Care to figure out which ones?


