

Math 445 Number Theory

September 29, 2004

Last time: If m is an odd prime and $(a, m) = 1$, then

$$x^2 \equiv a \pmod{m} \text{ has } \begin{cases} 2 \text{ solutions,} & \text{if } a^{\frac{m-1}{2}} \equiv 1 \\ 0 \text{ solutions,} & \text{if } a^{\frac{m-1}{2}} \equiv -1 \end{cases}$$

The only fact we really needed to know about the prime m , though, was that there was a primitive root, b , mod m . This, it turns out, is true somewhat more generally, and will allow us to extend our result above, suitably modified. What is in fact true is:

Theorem: If p is an odd prime and $k \geq 1$, then $m = p^k$ has a primitive root, i.e., there is an integer b with $\text{ord}_{p^k}(b) = \Phi(p^k) = p^{k-1}(p-1)$.

To see this, start with a primitive root b modulo p , i.e., $\text{ord}_p(b) = p-1$, and consider the collection of integers

$$A = \{b + pk : 0 \leq k \leq p-1\}$$

We claim that for all but at most one $a \in A$, $\text{ord}_{p^2}(a) = p(p-1)$. To see this, note that since $(a, p) = (b, p) = 1$, $(a, p^2) = 1$, so $a^{\Phi(p^2)} = a^{p(p-1)} \equiv 1 \pmod{p^2}$ by Euler's Theorem, so $\text{ord}_{p^2}(a) \mid p(p-1)$. But $a^k \equiv 1 \pmod{p^2}$ implies $a^k \equiv 1 \pmod{p}$ and $a \equiv b \pmod{p}$, so $p-1 \mid \text{ord}_{p^2}(a)$, so $\text{ord}_{p^2}(a) = p-1$ or $p(p-1)$. Our claim asserts that there is at most one a where it is $p-1$.

So, suppose there are two!

Suppose $(b + k_1 p)^{p-1} \equiv 1 \equiv (b + k_2 p)^{p-1} \pmod{p^2}$ with $0 \leq k_2 < k_1 \leq p-1$. Then

$$p^2 \mid (b + k_1 p)^{p-1} - (b + k_2 p)^{p-1} = [(b + k_1 p) - (b + k_2 p)] \cdot [(b + k_1 p)^{p-2} + (b + k_1 p)^{p-3}(b + k_2 p) + \cdots + (b + k_1 p)(b + k_2 p)^{p-3} + (b + k_2 p)^{p-2}] = p(k_1 - k_2)(\text{stuff})$$

So $p \mid (k_1 - k_2)(\text{stuff})$, so $p \mid (k_1 - k_2)$ or $p \mid (\text{stuff})$. But $0 < k_1 - k_2 < p-1$, so the first is impossible. And, mod p ,

$$\begin{aligned} \text{stuff} &= (b + k_1 p)^{p-2} + (b + k_1 p)^{p-3}(b + k_2 p) + \cdots + (b + k_1 p)(b + k_2 p)^{p-3} + (b + k_2 p)^{p-2} \\ &\equiv (b)^{p-2} + (b)^{p-3}(b) + \cdots + (b)(b)^{p-3} + (b)^{p-2} = (p-1)b^{p-2} \end{aligned}$$

and since $p \nmid (p-1)$, $p \nmid b$, p can't divide this stuff, either. This gives us a contradiction, so there is at most one value of $0 \leq k \leq p-1$ for which $\text{ord}_{p^2}(b + kp) = p-1$. So for all of the others, $\text{ord}_{p^2}(b + kp) = p(p-1)$, i.e., $b + kp$ is a primitive root modulo p^2 .

Next time we will see that we get all other higher powers for free.....