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Theorem: If p is an odd prime and k ≥ 1, then m = pk has a primitive root, i.e., there is
an integer b with ordpk(b) = Φ(pk) = pk−1(p − 1) .
We have so far shown this to be true for k = 1, 2. Today we see:
If p is an odd prime and b is a primitive root mod p2, then b is a primitive root mod pk

for all k ≥ 1 . In fact, we will show:
(*) If p is an odd prime and, for k ≥ 1, ordpk+1(b) > ordpk(b) , then ordpk+m(b) =
pm·ordpk(b) for all m ≥ 1.
To see this, set α = ordpk+1(b) and β = ordpk(b), then bα ≡ 1 (mod pk+1) implies bα ≡ 1
(mod pk) , so α|β, while pk|bβ − 1 and pk+1 � |bβ − 1 (since α > β implies bβ = 1 + spk

with pk+1 � |spk , so p � |s, so (s, p) = 1 . But then, mod pk+1
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so α|pβ, so α = β (contradicting our hypothesis) or α = pβ . So α = pβ. But even more,
since s + p(p−1
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s3p2k−2 + · · · ≡ s (mod p), so (s′, p) = 1, we have bpβ �≡ 1

(mod pk+2) (since pk+2 � |s′pk+1) . So ordpk+2(b) > ordpk+1(b) . So we can start the exact
same argument over again, to show that ordpk+2(b) = p·ordpk+1(b) . This type of argument
can be continued indefinitely (formally, we could simply say that under the assumption
(*) we showed that the exact same statement with k + m replaced by (k + m) + 1 was
true, which is the inductive step for showing that (*) is true by induction! (We simply
“called” k + m, k.) So we have proved (*) by induction. The initial step is literally the
first part of our proof.). So (*) is true for all m ≥ 1.
Applying this to ordp2(b) = p(p − 1) , we have that for every k ≥ 2, ordpk(b) = pk−1(p −
1) = Φ(pk) . So b is a primitive root modulo pk .
The only place where this argument breaks down for the prime p = 2 is when we write
((p − 1)/2)s2pk−1 , since (p − 1)/2 = 1/2 is not an integer. But we need to extract the
initial p of p((p − 1)/2)s2pk−1 from p(p − 1)/2, rather than from p2k, only when k = 1,

otherwise k ≥ 2 and we write this as 1 + pk+1(s + p(
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instead. Then the proof goes through as before. And so, for p = 2, we have:
If p = 2 , k ≥ 2 and ord2k+1(b) > ord2k(b) , then ord2k+m(b) = 2mord2k(b) for all m ≥ 1.

So, for example, since ord16(3) = 4 > 2 = ord8(3), we have ord2k(3) = 2k−2 for all k ≥ 3
. Since (a, 8) = 1 ⇒ ord8(a) = 2 < 4 = Φ(8) , there is no no primitive root mod 2k for
k ≥ 3 ; our proof above shows that 2k−2 < 2k−1 = Φ(2k) is the highest order possible.
Finally, with this result in hand, we can extend our result about nth roots mod p:
Theorem: If p is an odd prime, k ≥ 1, and (a, p) = 1, then the equation

xn ≡ a (mod pk) has




(n,Φ(pk)) solutions, if a
Φ(pk)

(n,Φ(pk)) ≡ 1

0 solutions, if a
Φ(pk

(n,Φ(pk)) ≡ −1


