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Proposition: If f is a polynomial with integer coefficients and (M, N) = 1, then the
congruence equation f(x) = 0 (mod M N) has a solution < the equations f(x) = 0
(mod M) and f(x)=0 (mod N) both do.

The direction (=) is immediate; M N|f(x) implies M|f(z) and N|f(zx), since M, N|M N
. The point to (<) is that the solutions we know of to each of the two equations might
be different: f(x1) =0 (mod M) and f(x3) =0 (mod N). What we wish to show is
that a single number solves both, since then M|f(z¢) and N|f(z¢) , and then (M,N) =1
implies that M N|f(xo) .

To do this, we use the fact that f is a polynomial, since then if a = b (mod n) , then f(a) =
f(b)b (mod n) . So if we suppose that we have found a and b with f(a) = 0 (mod M)
and f(b) =0 (mod N) , then any z satisfying both z = a (mod M) and x = b (mod N)
will satisfy both f(z) = 0 (mod M) and f(z) =0 (mod N) simultaneously, as desired.
So it is enough to show that for any a, b , there is an x which simultaneously satisfies
r=a (mod M) and z=0b (mod N)

But since (M, N) = 1, this is true by the Chinese Remainder Theorem. In fact, finding
x is a matter of solving t = a+ M7, x = b+ Nj , so we need a + Mi =b+ Nj, so
b—a= Mi— Nj. But since (M, N) = 1, we can use the Euclidean algorithm to write
1 =MIy+ NJy, and then i = (b—a)ly,j = —(b— a)Jy will work, allowing us to solve for
x. In fact, since the only other I,.J which will work are I = Iy + kN,J = Jy — kM , we
find that our solution z is unique modulo M N .

For any pair of solutions a,b to f(a) = 0 (mod M) and f(b) = 0 (mod N) there is a
unique corresponding x mod M N (with z =a (mod M) and z = b (mod N)) satisfying
f(x) =0 (mod MN). lintroducing the notation S(n) = the number of solutions, mod n,
to the equation f(z) = 0 (mod n) , we then have shown that S(MN) = S(M)S(N)
whenever (M, N) = 1 . So by induction, whenever Ni,... Ny are relatively prime,
S(Ny---Ng) = S(Ny)---S(Ng) -

So if N = p’fl -.-pFr is the prime factorization of the odd number N, then for any
(a,N) =1 (so (a,p;) =1 for each i) we have z"™ = a (mod N) has solutions < z" = a
(mod pfi) does for every ¢ , and we know how to determine when that occurs.
Quadratic Residues: If 22 = a (mod n) has a solution, a is a quadratic residue modulo
n . If it doesn’t, a is a quadratic non-residue modulo n . Euler’s Criterion gives us a test:
if p is a prime, then a is a quadratic residue mod n < o’ =1 (mod p). But this may
require a lot of calculation if p is large; our next task is to find a quicker way.

To talk about things in a compact manner, we introduce the Legendre symbol; for p an

Odd prime, 0 1f p‘a/
a
(—) =<1 if a is a quadratic residue mod p
p . . . .
—1 if a is a quadratic non-residue mod p
a —
By Euler’s criterion, this really means (—) =o' (mod p) , but our goal is to find a
p

quicker way to compute it!



