

Math 445 Number Theory

October 6, 2004

The *Legendre symbol*; for p an odd prime,

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } p|a \\ 1 & \text{if } a \text{ is a quadratic residue mod } p \\ -1 & \text{if } a \text{ is a quadratic non-residue mod } p \end{cases}$$

By Euler's criterion, $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$.

Lemma of Gauss: Let p be an odd prime and $(a, p) = 1$. For $1 \leq k \leq \frac{p-1}{2}$ let $ak = pt_k + a_k$ with $0 \leq a_k \leq p-1$. Let $A = \{k : a_k > \frac{p}{2}\}$, and let $n = |A|$ = the number of elements in A . Then $\left(\frac{a}{p}\right) = (-1)^n$.

To see this, first note that $a_k \neq 0$ for every k , since $p \nmid ak$. Let q_1, \dots, q_n be the a_k 's greater than $p/2$, and let r_1, \dots, r_m be the other a_k 's. Then $p - q_1, \dots, p - q_n, r_1, \dots, r_m$ are all $\leq \frac{p-1}{2}$, and are all *distinct*; $q_i = q_j$ or $r_i = r_j$ implies $p|ak_i - ak_j$, so $p|k_i - k_j$, contradicting that $-\frac{p}{2} < k_i - k_j < \frac{p}{2}$, and $p - q_i = r_j$ implies $p = q_i + r_j$ so $p|ak_i + ak_j$, contradicting that $0 < k_i + k_j \leq p-1$. This means that the sequence $p - q_1, \dots, p - q_n, r_1, \dots, r_m$ is identical to $1, 2, \dots, \frac{p-1}{2}$, just written in a different order. But then

$$(p - q_1) \cdots (p - q_n) r_1 \cdots r_m = \left(\frac{p-1}{2}\right)!$$

But, mod p , $(p - q_1) \cdots (p - q_n) r_1 \cdots r_m \equiv (-q_1) \cdots (-q_n) r_1 \cdots r_m = (-1)^n q_1 \cdots q_n r_1 \cdots r_m \equiv (-1)^n (a \cdot 1)(a \cdot 2) \cdots (a \cdot \frac{p-1}{2})$, since the q_i 's and r_i 's are together a reordering of the a_k , each of which is $\equiv ak$. So

$$\left(\frac{p-1}{2}\right)! \equiv (-1)^n a^{\frac{p-1}{2}} \left(\frac{p-1}{2}\right)!$$

and since $(p, \left(\frac{p-1}{2}\right)!) = 1$, we have, mod p , $1 \equiv (-1)^n a^{\frac{p-1}{2}}$, so $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \equiv (-1)^n$. But since p is an odd prime, $p \geq 3$, and since each of the two terms above are ± 1 , this implies $\left(\frac{a}{p}\right) = (-1)^n$, as desired.

Theorem: Let p be an odd prime and $(a, 2p) = 1$ (i.e., $(a, p) = 1$ and a is odd). Let $t = \sum_{j=1}^{\frac{p-1}{2}} \lfloor \frac{aj}{p} \rfloor$. Then $\left(\frac{a}{p}\right) = (-1)^t$.

To see this, we write $aj = pt_j + a_j$ as in the lemma above. Then $\lfloor \frac{aj}{p} \rfloor = t_j$ and so $t = \sum_{j=1}^{\frac{p-1}{2}} t_j$. But $(*) a \sum_{j=1}^{\frac{p-1}{2}} j = \sum_{j=1}^{\frac{p-1}{2}} aj = \sum_{j=1}^{\frac{p-1}{2}} pt_j + a_j = p \sum_{j=1}^{\frac{p-1}{2}} t_j + \sum_{i=1}^n q_i + \sum_{i=1}^m r_i = pt + \sum_{i=1}^n q_i + \sum_{i=1}^m r_i$, using the notation of the lemma. But since, as in the lemma, $p - q_1, \dots, p - q_n, r_1, \dots, r_m$ is a reordering of $1, \dots, \frac{p-1}{2}$, we have

$(**)$ $\sum_{j=1}^{\frac{p-1}{2}} j = \sum_{i=1}^n (p - q_i) + \sum_{i=1}^m r_i = pn - \sum_{i=1}^n q_i + \sum_{i=1}^m r_i$. Subtracting $(**)$ from $(*)$, we get:

$$(a - 1) \sum_{j=1}^{\frac{p-1}{2}} j = p(t - n) + 2 \sum_{i=1}^n q_i$$

Consequently, since, mod 2, $a - 1 \equiv 0$ (a is odd) and $2 \sum_{i=1}^n q_i \equiv 0$, we have $2|p(t - n)$, and so since p is odd, $2|t - n$. So $(-1)^t = (-1)^n$; together with the lemma above, this gives our result.

For next time, it is worth noting that $\sum_{j=1}^{\frac{p-1}{2}} j = \frac{1}{2} \left(\frac{p-1}{2}\right) \left(\frac{p-1}{2} + 1\right) = \frac{p^2 - 1}{8}$.