

Math 445 Number Theory

October 20, 2004

For Q odd and $(A, Q) = 1$, if $Q = q_1 \cdots q_k$ is the prime factorization of Q , then the *Jacobi symbol* $\left(\frac{A}{Q}\right)$ is defined to be $\left(\frac{A}{Q}\right) = \left(\frac{A}{q_1}\right) \cdots \left(\frac{A}{q_k}\right)$.

The use of the same notation as for Legendre symbols should cause no confusion, and is in fact deliberate; if Q is prime, then both symbols are equal to one another. Straight from the definition, some basic properties:

If $(A, Q) = 1 = (B, Q)$ then $\left(\frac{AB}{Q}\right) = \left(\frac{A}{Q}\right) \left(\frac{B}{Q}\right)$

If $(A, Q) = 1 = (A, Q')$ then $\left(\frac{A}{QQ'}\right) = \left(\frac{A}{Q}\right) \left(\frac{A}{Q'}\right)$

If $(PP', QQ') = 1$ then $\left(\frac{P'P^2}{QQ'}\right) = \left(\frac{P'}{Q'}\right)$

Warning! If Q is not prime, then $\left(\frac{A}{Q}\right) = 1$ does *not* mean that $x^2 \equiv A \pmod{Q}$ has a solution.

For example, $\left(\frac{2}{9}\right) = \left(\frac{2}{3}\right)^2 = 1$, but $x^2 \equiv 2 \pmod{9}$ has no solution, because $x^2 \equiv 2 \pmod{3}$ has none. But $\left(\frac{A}{Q}\right) = -1$ does mean that $x^2 \equiv A \pmod{Q}$ has *no* solution, because $\left(\frac{A}{Q}\right) = -1$ implies $\left(\frac{A}{q_i}\right) = -1$ for some prime factor of Q , so $x^2 \equiv A \pmod{q_i}$ has no solution.

Some less basic properties:

If Q is odd, then $\left(\frac{-1}{Q}\right) = (-1)^{\frac{Q-1}{2}}$: If $Q = q_1 \cdots q_k$ is the prime factorization, then $\left(\frac{-1}{Q}\right) = \left(\frac{-1}{q_1}\right) \cdots \left(\frac{-1}{q_k}\right) = (-1)^{\frac{q_1-1}{2}} \cdots (-1)^{\frac{q_k-1}{2}} = (-1)^{\sum_{i=1}^k \frac{q_i-1}{2}}$, and this equals $(-1)^{\frac{Q-1}{2}}$, provided, mod 2, $\sum_{i=1}^k \frac{q_i-1}{2} \equiv \frac{Q-1}{2} = \frac{q_1 \cdots q_k - 1}{2}$. This in turn can be established by induction; the inductive step is

$$\frac{q_1 \cdots q_k q_{k+1} - 1}{2} = (q_{k+1} - 1) \frac{q_1 \cdots q_k - 1}{2} + \frac{q_1 \cdots q_k - 1}{2} + \frac{q_{k+1} - 1}{2} \equiv (q_{k+1} - 1) \frac{q_1 \cdots q_k - 1}{2} + \frac{q_{k+1} - 1}{2} + \sum_{i=1}^k \frac{q_i - 1}{2} \equiv (q_{k+1} - 1) \frac{q_1 \cdots q_k - 1}{2} + \sum_{i=1}^{k+1} \frac{q_i - 1}{2} \equiv \sum_{i=1}^{k+1} \frac{q_i - 1}{2}, \text{ since } Q \text{ is odd, so } q_{k+1} - 1 \text{ is even.}$$

If Q is odd, then $\left(\frac{2}{Q}\right) = (-1)^{\frac{Q^2-1}{8}}$: as before, $\left(\frac{2}{q_1}\right) = \left(\frac{2}{q_1}\right) \cdots \left(\frac{2}{q_k}\right) = (-1)^{\frac{q_1^2-1}{8}} \cdots (-1)^{\frac{q_k^2-1}{8}} = (-1)^{\sum_{i=1}^k \frac{q_i^2-1}{8}}$ and this equals $(-1)^{\frac{Q^2-1}{8}}$, provided, mod 2, $\sum_{i=1}^k \frac{q_i^2-1}{8} \equiv \frac{Q^2-1}{8} = \frac{q_1^2 \cdots q_k^2 - 1}{8}$, i.e., mod 16, $\sum_{i=1}^k (q_i^2 - 1) \equiv \frac{Q^2-1}{8} = \frac{q_1^2 \cdots q_k^2 - 1}{8}$. This can also be established by induction; the inductive step is

$$q_1^2 \cdots q_{k+1}^2 - 1 = q_{k+1}^2 q_1^2 \cdots q_k^2 - 1 = (q_{k+1}^2 - 1)(q_1^2 \cdots q_k^2 - 1) + (q_1^2 \cdots q_k^2 - 1) + (q_{k+1}^2 - 1) \equiv (q_{k+1}^2 - 1) + (q_1^2 \cdots q_k^2 - 1) \equiv (q_{k+1}^2 - 1) + \sum_{i=1}^k (q_i^2 - 1) = \sum_{i=1}^{k+1} (q_i^2 - 1), \text{ since both } (q_{k+1}^2 - 1) \text{ and } (q_1^2 \cdots q_k^2 - 1) \text{ are multiples of 8, so } (q_{k+1}^2 - 1)(q_1^2 \cdots q_k^2 - 1) \text{ is divisible by 64, hence by 16.}$$

Finally, if P and Q are both odd, and $(P, Q) = 1$, then $\left(\frac{P}{Q}\right) \left(\frac{Q}{P}\right) = (-1)^{\left(\frac{P-1}{2}\right) \left(\frac{Q-1}{2}\right)}$: if

$P = p_1 \cdots p_r$ and $Q = q_1 \cdots q_s$ are their prime factorizations, then $\left(\frac{P}{Q}\right) \left(\frac{Q}{P}\right) = \left(\frac{p_1 \cdots p_r}{Q}\right) \left(\frac{Q}{p_1 \cdots p_r}\right)$

$$= \left(\frac{p_1}{Q}\right) \cdots \left(\frac{p_r}{Q}\right) \left(\frac{Q}{p_1}\right) \cdots \left(\frac{Q}{p_r}\right) =$$

$$[(\left(\frac{p_1}{q_1}\right) \cdots \left(\frac{p_1}{q_s}\right)) \cdots (\left(\frac{p_r}{q_1}\right) \cdots \left(\frac{p_r}{q_s}\right))] [(\left(\frac{q_1}{p_1}\right) \cdots \left(\frac{q_s}{p_1}\right)) \cdots (\left(\frac{q_1}{p_r}\right) \cdots \left(\frac{q_s}{p_r}\right))] =$$

$$\prod_{i,j} \left(\frac{p_i}{q_j}\right) \left(\frac{q_j}{p_i}\right) = \prod_{i,j} (-1)^{\frac{p_i-1}{2} \frac{q_j-1}{2}} = (-1)^{\sum_{i,j} \frac{p_i-1}{2} \frac{q_j-1}{2}} = (-1)^{(\sum_{i=1}^r \frac{p_i-1}{2})(\sum_{j=1}^s \frac{q_j-1}{2})}.$$

This equals $(-1)^{\left(\frac{P-1}{2}\right) \left(\frac{Q-1}{2}\right)}$, provided, mod 2, $(\sum_{i=1}^r \frac{p_i-1}{2})(\sum_{j=1}^s \frac{q_j-1}{2}) \equiv (\frac{P-1}{2})(\frac{Q-1}{2})$. But our first proof above established this, for each of the two parts, and so it is also true for their product!