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For Q odd and (A, Q) = 1, if Q = q1 · · · qk is the prime factorization of Q, then the Jacobi symbol(
A
Q

)
is defined to be

(
A
Q

)
=

(
A
q1

)
· · ·

(
A
qk

)
.

The use of the same notation as for Legendre symbols should cause no confusion, and is in
fact deliberate; if Q is prime, then both symbols are equal to one another. Straight from the
definition, some basic properties:

If (A, Q) = 1 = (B, Q) then
(

AB
Q

)
=

(
A
Q

)(
B
Q

)

If (A, Q) = 1 = (A, Q′) then
(

A
QQ′

)
=

(
A
Q

)(
A
Q′

)

If (PP ′, QQ′) = 1 then
(

P ′P 2

Q′Q2

)
=

(
P ′
Q′

)

Warning! If Q is not prime, then
(

A
Q

)
= 1 does not mean that x2 ≡ A (mod Q) has a solution.

For example,
(

2
9

)
= (

(
2
3

)
)2 = 1 , but x2 ≡ 2 (mod 9) has no solution, because x2 ≡ 2 (mod 3)

has none. But
(

A
Q

)
= −1 does mean that x2 ≡ A (mod Q) has no solution, because

(
A
Q

)
= −1

implies
(

A
qi

)
= −1 for some prime factor of Q, so x2 ≡ A (mod qi) has no solution.

Some less basic properties:

If Q is odd, then
(

−1
Q

)
= (−1)

Q−1
2 : If Q = q1 · · · qk is the prime factorization, then

(
−1
Q

)
=(

−1
q1

)
· · ·

(
−1
qk

)
= (−1)

q1−1
2 · · · (−1)

qk−1
2 = (−1)

∑
k

i=1

qi−1
2 , and this equals(−1)

Q−1
2 , provided,

mod 2,
∑k

i=1
qi−1

2 ≡ Q−1
2 = q1···qk−1

2 . This in turn can be established by induction; the
inductive step is
q1···qkqk+1−1

2 = (qk+1−1) q1···qk−1
2 + q1···qk−1

2 + qk+1−1
2 ≡ (qk+1−1) q1···qk−1

2 + qk+1−1
2 +

∑k
i=1

qi−1
2 ≡

(qk+1 − 1) q1···qk−1
2 +

∑k+1
i=1

qi−1
2 ≡ ∑k+1

i=1
qi−1

2 , since Q is odd, so qk+1 − 1 is even.

If Q is odd, then
(

2
Q

)
= (−1)

Q2−1
8 : as before,

(
2
Q

)
=

(
2
q1

)
· · ·

(
2
qk

)

= (−1)
q2
1−1
8 · · · (−1)

q2
k
−1

8 = (−1)
∑k

i=1

q2
i
−1

8 and this equals(−1)
Q2−1

8 , provided, mod 2,∑k
i=1

q2
i −1
8

≡ Q2−1
8

= q2
1···q2

k−1
8

, i.e., mod 16,
∑k

i=1(q
2
i − 1) ≡ Q2−1

8
= q2

1 ···q2
k−1

8
. This can also

be established by induction; the inductive step is
q2
1 · · · q2

k+1 − 1 = q2
k+1q

2
1 · · · q2

k − 1 = (q2
k+1 − 1)(q2

1 · · · q2
k − 1) + (q2

1 · · · q2
k − 1) + (q2

k+1 − 1) ≡
(q2

k+1 − 1) + (q2
1 · · · q2

k − 1) ≡ (q2
k+1 − 1) +

∑k
i=1(q

2
i − 1) =

∑k+1
i=1 (q2

i − 1) , since both (q2
k+1 − 1)

and (q2
1 · · · q2

k − 1) are multiples of 8, so (q2
k+1 − 1)(q2

1 · · · q2
k − 1) is divisible by 64, hence by 16.

Finally, if P and Q are both odd, and (P, Q) = 1, then
(

P
Q

)(
Q
P

)
= (−1)(

P−1
2 )( Q−1

2 ) : if

P = p1 · · · pr and Q = q1 · · · qs are their prime factorizations, then
(

P
Q

)(
Q
P

)
=

(
p1···pr

Q

)(
Q

p1···pr

)

=
(

p1
Q

)
· · ·

(
pr

Q

)(
Q
p1

)
· · ·

(
Q
pr

)
=

[(
(

p1
q1

)
· · ·

(
p1
qs

)
) · · · (

(
pr

q1

)
· · ·

(
pr

qs

)
)][(

(
q1
p1

)
· · ·

(
qs

p1

)
) · · · (

(
q1
pr

)
· · ·

(
qs

pr

)
)] =

∏
i,j

(
pi

qj

)(
qj

pi

)
=

∏
i,j(−1)

pi−1
2

qj−1
2 = (−1)

∑
i,j

pi−1
2

qj−1
2 = (−1)(

∑
r

i=1

pi−1
2 )(

∑
s

j=1

qj−1
2 ) .

This equals (−1)(
P−1

2 )( Q−1
2 ), provided, mod 2, (

∑r
i=1

pi−1
2

)(
∑s

j=1
qj−1

2
) ≡ (P−1

2
)(Q−1

2
). But our

first proof above established this, for each of the two parts, and so it is also true for their product!


