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Since the Jacobi symbol has essentially the same properties as the Legendre symbol, we can
compute them in essentially the same way; extract factors of 2 from the top (and −1), and use
reciprocity to compute the rest. The advantage: we don’t need to factor the top any further,
any odd number will work fine.
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One basic result coming from reciprocity: for a fixed (odd) a, we can determine for which primes
p the equation x2 ≡ a (mod p) will have solutions.
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(which only depends on p mod a) and (if

a ≡ 3 (mod 4)) on p mod 4 (to determine the parity of p−1
2

a−1
2 - if a ≡ 1 (mod 4) it is always

even). So
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depends on p mod a and on p mod 4 (when a ≡ 3 (mod 4)), so it depends at most

on p mod 4a (by the Chinese Remainder Theorem). So the primes for which x2 ≡ a (mod p)
have solutions fall precisely into certain equivalence classes mod a or 4a, depending upon a. If
we include even values for a, then we need to extract 2’s, and the result will depend upon p mod
8 (for the
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)
’s) and, at worst, on p mod a/2, and so it still depends at most on p mod 4a .

A brief interlude: we know that there are infinitely many primes. But how are they distributed?
For example,
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show that this sum diverges, so that we know that, in some sense, primes are more common
than perfect squares....

To show this, pick a positive number N , and let p1, . . . pk be the primes ≤ N . Then let
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But the initial sum includes all denomenators ≤ N , since every k ≤ N is a product of primes
≤ N , i.e, is a product of the primes p1, . . . , pk. So A ≥ ∑N
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n ≥ ∫ N
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x dx = ln(N) by the

integral test. So p1
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≥ ln(N) . Taking logs of both sides, we have∑k
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− . . . ≤ x (since it is an alternating series with terms decreasing to 0 (or, if

you prefer, by using 1
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n2 = ln(ln(N)) − π2

3 ≥ ln(ln(N)) − 4 . So
the sum of the reciprocals of the primes ≤ N is ≥ ln(ln(N))− 4 . Since ln(ln(N)) tends to ∞ as
N → ∞ (albeit very slowly), the sum of the reciprocals of the primes diverges.

It is in fact true that as n → ∞, (
∑

p prime,p≤n
1
p ) − ln(ln(n)) converges to a finite constant M ,

known as the Meissel-Mertens constant. It’s value is, approximately, 0.26149721284764278... .


