

Math 445 Number Theory

October 22, 2004

Since the Jacobi symbol has essentially the same properties as the Legendre symbol, we can compute them in essentially the same way; extract factors of 2 from the top (and -1), and use reciprocity to compute the rest. The advantage: we don't need to factor the top any further, any odd number will work fine.

$$\text{Example: } \left(\frac{2225}{3333}\right) = \left(\frac{3333}{2225}\right)(-1)^{1666 \cdot 1112} = \left(\frac{2225+1108}{2225}\right) = \left(\frac{2^2 \cdot 277}{2225}\right) = \left(\left(\frac{2}{2225}\right)\right)^2 \left(\frac{277}{2225}\right) = \left(\frac{2225}{277}\right)(-1)^{1112 \cdot 138} = \left(\frac{277 \cdot 9+182}{277}\right) = \left(\frac{182}{277}\right) = \left(\frac{2}{277}\right) \left(\frac{91}{277}\right) = (-1)^{\frac{277^2-1}{8}} \left(\frac{277}{91}\right)(-1)^{138 \cdot 45} = (-1)^{9591} \left(\frac{91 \cdot 3+4}{91}\right) = (-1) \left(\frac{4}{91}\right) = (-1) \left(\left(\frac{2}{91}\right)\right)^2 = -1$$

One basic result coming from reciprocity: for a fixed (odd) a , we can determine for which primes p the equation $x^2 \equiv a \pmod{p}$ will have solutions.

$1 = \left(\frac{a}{p}\right) = \left(\frac{p}{a}\right)(-1)^{\frac{p-1}{2} \frac{a-1}{2}}$ is determined by $\left(\frac{p}{a}\right)$ (which only depends on $p \pmod{a}$) and (if $a \equiv 3 \pmod{4}$) on $p \pmod{4}$ (to determine the parity of $\frac{p-1}{2} \frac{a-1}{2}$ - if $a \equiv 1 \pmod{4}$ it is always even). So $\left(\frac{a}{p}\right)$ depends on $p \pmod{a}$ and on $p \pmod{4}$ (when $a \equiv 3 \pmod{4}$), so it depends at most on $p \pmod{4a}$ (by the Chinese Remainder Theorem). So the primes for which $x^2 \equiv a \pmod{p}$ have solutions fall *precisely* into certain equivalence classes mod a or $4a$, depending upon a . If we include even values for a , then we need to extract 2's, and the result will depend upon $p \pmod{8}$ (for the $\left(\frac{2}{p}\right)$'s) and, at worst, on $p \pmod{a/2}$, and so it still depends at most on $p \pmod{4a}$.

A brief interlude: we know that there are infinitely many primes. But how are they distributed? For example, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, but $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} < \infty$. So how about $\sum_{p \text{ prime}} \frac{1}{p}$? We will show that this sum diverges, so that we know that, in some sense, primes are more common than perfect squares....

To show this, pick a positive number N , and let p_1, \dots, p_k be the primes $\leq N$. Then let $A = \sum_{i_1, \dots, i_k=0}^{\infty} \frac{1}{p_1^{i_1} \dots p_k^{i_k}} = (\sum_{i_1=0}^{\infty} (\frac{1}{p_1})^{i_1}) \dots (\sum_{i_k=0}^{\infty} (\frac{1}{p_k})^{i_k}) = \frac{1}{1-\frac{1}{p_1}} \dots \frac{1}{1-\frac{1}{p_k}} = \frac{p_1}{p_1-1} \dots \frac{p_k}{p_k-1}$. But the initial sum includes all denominators $\leq N$, since every $k \leq N$ is a product of primes $\leq N$, i.e, is a product of the primes p_1, \dots, p_k . So $A \geq \sum_{n=1}^N \frac{1}{n} \geq \int_1^N \frac{1}{x} dx = \ln(N)$ by the integral test. So $\frac{p_1}{p_1-1} \dots \frac{p_k}{p_k-1} \geq \ln(N)$. Taking logs of both sides, we have $\sum_{i=1}^k \ln(\frac{p_i}{p_i-1}) = \sum_{i=1}^k \ln(1 + \frac{1}{p_i-1}) \geq \ln(\ln(N))$. But from power series we know that for $|x| < 1$, $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots \leq x$ (since it is an alternating series with terms decreasing to 0 (or, if you prefer, by using $\frac{1}{1+x} \leq 1$ and integrating from 1 to x)), so $\sum_{i=1}^k \frac{1}{p_i-1} \geq \sum_{i=1}^k \ln(1 + \frac{1}{p_i-1}) \geq \ln(\ln(N))$. But $\frac{1}{p_i-1} \leq \frac{p_i+2}{p_i^2} = \frac{1}{p_i} + \frac{2}{p_i^2}$ (since $(p_i-1)(p_i+2) = p_i^2 + p_i - 2 \geq p_i^2$), so $\sum_{i=1}^k \frac{1}{p_i} + \frac{2}{p_i^2} \geq \sum_{i=1}^k i = \sum_{i=1}^k \frac{1}{p_i-1} \geq \ln(\ln(N))$. So $\sum_{i=1}^k \frac{1}{p_i} \geq \ln(\ln(N)) - \sum_{i=1}^k \frac{2}{p_i^2} \geq \ln(\ln(N)) - \sum_{i=1}^{\infty} \frac{2}{n^2} = \ln(\ln(N)) - \frac{\pi^2}{3} \geq \ln(\ln(N)) - 4$. So the sum of the reciprocals of the primes $\leq N$ is $\geq \ln(\ln(N)) - 4$. Since $\ln(\ln(N))$ tends to ∞ as $N \rightarrow \infty$ (albeit very slowly), the sum of the reciprocals of the primes diverges.

It is in fact true that as $n \rightarrow \infty$, $(\sum_{p \text{ prime}, p \leq n} \frac{1}{p}) - \ln(\ln(n))$ converges to a finite constant M , known as the *Meissel-Mertens constant*. Its value is, approximately, 0.26149721284764278... .