

Math 445 Number Theory

October 27, 2004

Continued fractions: Another example: $\sqrt{77}$

$8 < \sqrt{77} < 9$. so:

$$\begin{aligned}
 a_0 &= \lfloor \sqrt{77} \rfloor = 8, r_0 = \sqrt{77} - 8, \quad a_1 = \lfloor \frac{1}{\sqrt{77} - 8} \rfloor = \lfloor \frac{\sqrt{77} + 8}{13} \rfloor = 1, r_1 = \frac{\sqrt{77} + 8}{13} - 1 = \frac{\sqrt{77} - 5}{13}, \\
 a_2 &= \lfloor \frac{13}{\sqrt{77} - 5} \rfloor = \lfloor \frac{\sqrt{77} + 5}{4} \rfloor = 3, r_2 = \frac{\sqrt{77} + 5}{4} - 3 = \frac{\sqrt{77} - 7}{4}, \\
 a_3 &= \lfloor \frac{4}{\sqrt{77} - 7} \rfloor = \lfloor \frac{\sqrt{77} + 7}{7} \rfloor = 2, r_2 = \frac{\sqrt{77} + 7}{7} - 2 = \frac{\sqrt{77} - 7}{7}, \quad a_3 = \lfloor \frac{7}{\sqrt{77} - 7} \rfloor = \lfloor \frac{\sqrt{77} + 7}{4} \rfloor = 3, r_3 = \frac{\sqrt{77} + 7}{4} - 3 = \frac{\sqrt{77} - 5}{4}, \\
 a_4 &= \lfloor \frac{4}{\sqrt{77} - 5} \rfloor = \lfloor \frac{\sqrt{77} + 5}{13} \rfloor = 1, r_4 = \frac{\sqrt{77} + 5}{13} - 1 = \frac{\sqrt{77} - 8}{13}, \quad a_5 = \lfloor \frac{13}{\sqrt{77} - 8} \rfloor = \lfloor \frac{\sqrt{77} + 8}{1} \rfloor = 16, \\
 r_5 &= \frac{\sqrt{77} + 8}{1} - 16 = \frac{\sqrt{77} - 8}{1} = r_0,
 \end{aligned}$$

and then the process will repeat. So, $\sqrt{77} = [8, 1, 3, 2, 3, 1, 16, 1, 3, 2, 3, 1, 16, \dots] = [3, \overline{1, 3, 2, 3, 1, 16}]$.

Some basic facts. Finite, simple, continued fraction $x = [a_0, a_1, \dots, a_n]$, $a_i \in \mathbb{N}$ for all $i \geq 1$; $a_0 \in \mathbb{Z}$.

A basic formula: $[a_0, a_1, \dots, a_n] = a_0 + \frac{1}{[a_1, \dots, a_n]}$.

x is a rational number. (Proof: induction on n .)

Because $a_n = (a_n - 1) + \frac{1}{1}$, $[a_0, a_1, \dots, a_n] = [a_0, a_1, \dots, a_n - 1, 1]$. But this is the only type of equality:

If $[a_0, a_1, \dots, a_n] = [b_0, b_1, \dots, b_m]$ with $a_n, b_m > 1$, then $n = m$ and $a_i = b_i$ for all i . The idea:

$[a_0, a_1, \dots, a_n] = a_0 + \frac{1}{[a_1, \dots, a_n]}$, and $[a_1, \dots, a_n] > 1$, so $a_0 = \lfloor [a_0, a_1, \dots, a_n] \rfloor = \lfloor [b_0, b_1, \dots, b_m] \rfloor = b_0$. So $\frac{1}{[a_1, \dots, a_n]} = \frac{1}{[b_1, \dots, b_m]}$, so $[a_1, \dots, a_n] = [b_1, \dots, b_m]$.

Then continue by induction.

Our basic formulas will hold just as well if the a_i are not integers. Another basic formula that we will repeatedly use is

$$[a_0, \dots, a_{n-1}, a_n] = [a_0, \dots, a_{n-2}, a_{n-1} + \frac{1}{a_n}]$$

Computing $[a_0, \dots, a_n]$ from $[a_0, \dots, a_{n-1}]$:

$[a_0, \dots, a_n] = \frac{h_n}{k_n}$, where the h_n, k_n are defined inductively by

$h_{-2} = 0, h_{-1} = 1, k_{-2} = 1, k_{-1} = 0$, and $h_i = h_{i-1}a_i + h_{i-2}$, $k_i = k_{i-1}a_i + k_{i-2}$

Proof: next time.