

Math 445 Number Theory

October 29, 2004

Computing $[a_0, \dots, a_n]$ from $[a_0, \dots, a_{n-1}]$:

$[a_0, \dots, a_n] = \frac{h_n}{k_n}$, where the h_n, k_n are defined inductively by

$h_{-2} = 0, h_{-1} = 1, k_{-2} = 1, k_{-1} = 0$, and $h_i = h_{i-1}a_i + h_{i-2}$, $k_i = k_{i-1}a_i + k_{i-2}$

The idea: induction! Check true for $i = 0$. Suppose it is true for any continued fraction $[b_0, \dots, b_{n-1}]$. Then $[a_0, \dots, a_n] = [a_0, \dots, a_{n-2}, a_{n-1} + \frac{1}{a_n}]$ has length n , so $[a_0, \dots, a_n] =$

$$[a_0, \dots, a_{n-2}, a_{n-1} + \frac{1}{a_n}] = \frac{H_{n-1}}{K_{n-1}} = \frac{h_{n-2}(a_{n-1} + \frac{1}{a_n}) + h_{n-3}}{k_{n-2}(a_{n-1} + \frac{1}{a_n}) + k_{n-3}} = \frac{h_{n-2}(a_{n-1}a_n + 1) + h_{n-3}a_n}{k_{n-2}(a_{n-1}a_n + 1) + k_{n-3}a_n} =$$

$$\frac{(h_{n-2}a_{n-1} + h_{n-3})a_n + h_{n-2}}{((k_{n-2}a_{n-1} + k_{n-3})a_n + k_{n-2})} = \frac{h_{n-1}a_n + h_{n-2}}{k_{n-1}a_n + k_{n-2}} = \frac{h_n}{k_n} , \text{ as desired.}$$

The real point here is that since $[a_0, \dots, a_n]$ and $[a_0, \dots, a_{n-2}, a_{n-1} + \frac{1}{a_n}]$ both agree in the inductive definitions of their h_i and k_i , through $i = n - 2$, this really *is* the calculation of the h_n/k_n for $[a_0, \dots, a_n]$.

There are several important things we can learn from this calculation. First, since $k_{-1} = 0, k_0 = 0 \cdot a_0 + 1 = 1$, and $k_n = k_{n-1}a_n + k_{n-2} \geq k_{n-1} + k_{n-2} > k_{n-1}$ for $n \geq 2$, the k_n are a strictly increasing sequence of integers, and in fact, $k_n \geq n$. Even more, since $k_n \geq k_{n-1} + k_{n-2}$, the terms grow faster than the Fibonacci sequence (which has $F_n = F_{n-1} + F_{n-2}, F_0 = 1, F_1 = 1$, and grows approximately like $\left(\frac{1 + \sqrt{5}}{2}\right)^2$.

Second, $(h_n, k_n) = 1$ for all n . In fact, $h_n k_{n-1} - h_{n-1} k_n = (-1)^n$ and $h_n k_{n-2} - h_{n-2} k_n = (-1)^n a_n$.

This follows by induction; check $n = 0$, and then $h_n k_{n-1} - h_{n-1} k_n = (h_{n-1}a_n + h_{n-2})k_{n-1} - h_{n-1}(k_{n-1}a_n + k_{n-2}) = h_{n-1}k_{n-1}a_n + h_{n-2}k_{n-1} - h_{n-1}k_{n-1}a_n - h_{n-1}k_{n-2} = h_{n-2}k_{n-1} - h_{n-1}k_{n-2} = (-1)(h_{n-1}k_{n-2} - h_{n-2}k_{n-1}) = (-1)(-1)^{n-2} = (-1)^{n-1}$, by induction, and then $h_n k_{n-2} - h_{n-2} k_n = (h_{n-1}a_n + h_{n-2})k_{n-2} - h_{n-2}(k_{n-1}a_n + k_{n-2}) = h_{n-1}k_{n-2}a_n + h_{n-2}k_{n-2} - h_{n-2}k_{n-1}a_n - h_{n-2}k_{n-2} = a_n(h_{n-1}k_{n-2} - h_{n-2}k_{n-1}) = a_n(-1)^{n-2} = (-1)^n a_n$. This in turn gives us:

Third: setting $r_n = [a_0, \dots, a_n] = \frac{h_n}{k_n}$, we have $r_n - r_{n-1} = \frac{h_n}{k_n} - \frac{h_{n-1}}{k_{n-1}} = \frac{h_n k_{n-1} - h_{n-1} k_n}{k_{n-1} k_n} = \frac{(-1)^n}{k_{n-1} k_n}$ and similarly, $r_n - r_{n-2} = \frac{h_n}{k_n} - \frac{h_{n-2}}{k_{n-2}} = \frac{(-1)^n a_n}{k_{n-2} k_n}$.

This tells us many things! Since the k_n 's are all positive (and, in fact, increasing), if we look at the “even” terms, r_0, r_2, r_4, \dots , this is an increasing sequence. The odd terms, r_1, r_3, r_5, \dots are a decreasing sequence. And since successive terms are getting closer to one another, we have that the sequence $\{r_n\}_{n=0}^{\infty}$ converges. We will denote its limit, of course, as $[a_0, a_1, \dots, a_n, \dots]$.

But converges to what? If the continued fraction came from our procedure for computing the expansion of a real number x :: $a_0 = \lfloor x \rfloor$, $x_0 = x - a_0$, and inductively $a_n = \lfloor 1/x_{n-1} \rfloor$, $x_n = (1/x_{n-1}) - a_n$, we have $x = [a_0, \dots, a_{n-1}, a_n + x_n] < [a_0, \dots, a_{n-1}, a_n]$ for n odd, and $x > [a_0, \dots, a_{n-1}, a_n]$ for n even (by induction!). So $r_{2n} < x < r_{2n+1}$, so r_n converges to x !

In particular, $|x - r_n| < |r_{n+1} - r_n| = \left| \frac{(-1)^n}{k_n k_{n+1}} \right| = \frac{1}{k_n k_{n+1}} \leq \frac{1}{k_n^2 a_{n+1}}$ so the r_n make good rational approximations to x .