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Computing [a0, . . . , an] from [a0, . . . , an−1] :

[a0, . . . , an] =
hn

kn
, where the hn, kn are defined inductively by

h−2 = 0, h−1 = 1, k−2 = 1, k−1 = 0 , and hi = hi−1ai + hi−2 , ki = ki−1ai + ki−2

The idea: induction! Check true for i = 0. Suppose it is true for any continued fraction

[b0, . . . , bn−1] . Then [a0, . . . , an] = [a0, . . . , an−2, an−1 +
1
an

] has length n, so [a0, . . . , an] =

[a0, . . . , an−2, an−1+
1
an

] =
Hn−1

Kn−1
=

hn−2(an−1 + 1
an

) + hn−3

kn−2(an−1 + 1
an

) + kn−3

=
hn−2(an−1an + 1) + hn−3an

kn−2(an−1an + 1) + kn−3an
=

(hn−2an−1 + hn−3)an + hn−2

((kn−2an−1 + kn−3)an + kn−2
=

hn−1an + hn−2

kn−1an + kn−2
=

hn

kn
, as desired.

The real point here is that since [a0, . . . , an] and [a0, . . . , an−2, an−1 + 1
an

] both agree in the
inductive definitions of their hi and ki, through i = n − 2, this really is the calculation of the
hn/kn for [a0, . . . , an] .

There are several important things we can learn from this calculation. First, since k−1 = 0, k0 =
0 · a0 + 1 = 1, and kn = kn−1an + kn−2 ≥ kn−1 + kn−2 > kn−1 for n ≥ 2, the kn are a strinctly
increasing sequence of integers, and in fact, kn ≥ n. Even more, since kn ≥ kn−1 + kn−2, the
terms grow faster than the Fibonacci sequence (which has Fn = Fn−1 + Fn−2, F0 = 1, F1 = 1,

and grows approximately like
(1 +

√
5

2

)2

.

Second, (hn, kn) = 1 for all n . In fact, hnkn−1 − hn−1kn = (−1)n and
hnkn−2 − hn−2kn = (−1)nan .
This follows by induction; check n = 0, and then hnkn−1 − hn−1kn = (hn−1an + hn−2)kn−1 −
hn−1(kn−1an + kn−2) = hn−1kn−1an + hn−2kn−1 − hn−1kn−1an − hn−1kn−2 = hn−2kn−1 −
hn−1kn−2 = (−1)(hn−1kn−2 − hn−2kn−1) = (−1)(−1)n−2 = (−1)n−1 , by induction, and then
hnkn−2 − hn−2kn = (hn−1an + hn−2)kn−2 − hn−2(kn−1an + kn−2) = hn−1kn−2an + hn−2kn−2 −
hn−2kn−1an − hn−2kn−2 = an(hn−1kn−2 − hn−2kn−1) = an(−1)n−2 = (−1)nan. This in turn
gives us:

Third: setting rn = [a0, . . . , an] =
hn

kn
, we have rn − rn−1 =

hn

kn
− hn−1

kn−1
=

hnkn−1 − hn−1kn

kn−1kn
=

(−1)n

kn−1kn
and similarly, rn − rn−2 =

hn

kn
− hn−2

kn−2
=

(−1)nan

kn−2kn
.

This tells us many things! Since the kn’s are all positive (and, in fact, increasing), if we look at
the “even” terms, r0, r2, r4, . . . , this is an increasing sequence. The odd terms, r1, r3, r5, . . . are
a decreasing sequence. And since successive terms are getting closer to one another, we have
that the sequence {rn}∞n=0 converges. We will denote its limit, of course, as [a0, a1, . . . , an, . . . ] .
But converges to what? If the continued fraction came from our procedure for computing the
expansion of a real number x :: a0 = �x�, x0 = x − a0, and inductively an = �1/xn−1� ,
xn = (1/xn−1) − an, we have x = [a0, . . . , an−1, an + xn] < [a0, . . . , an−1, an] for n odd, and
x > [a0, . . . , an−1, an] for n even (by induction!). So r2n < x < r2n+1 , so rn converges to x !

In particular, |x − rn| < |rn+1 − rn| = | (−1)n

knkn+1
| =

1
knkn+1

≤ 1
k2

nan+1
so the rn make good

rational approximations to x.


