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x has a repeating continued fraction expansion x = [a0, . . . , an, b0, . . . , bm] ⇔ x = r + s
√

t for some
r, s ∈ Q , t ∈ Z . Last time: enough to show this for α = [b0, . . . , bm] = [b0, . . . , bm, α] . Then for

[b0, . . . , bm] =
h′

m

k′
m

, α =
h′

mα + h′
m−1

k′
mα + k′

m−1

, so k′
mα2 + k′

m−1α = h′
mα + h′

m−1 , so α is the solution of

a quadratic equation with rational coefficients, so α = r0 + s0

√
t , as desired. The converse (⇐)

direction follows an argument parallel to one of your homework questions; our further explorations will
not need this direction.

In what follows, for x =
a +

√
d

b
, it will be useful to have the notation x′ =

a −√
d

b
for the conjugate

of x, that is, the other root of the quadratic having x as root. Our main result on periodic continued
fractions is: If x =

√
n + �√n�, then x = [a0, . . . , ak] is purely periodic.

To see this, note that x′ = �√n�−√
n , so −1 < x′ < 0 . If we set x = [a0, . . . , ai + xi] = [a0, . . . , ai, ζi]

(so ζi =
1
xi

and ai+1 = �ζi�) then from our homework we know that (since
√

n = [b0, b1, . . . ] =

[a0 − �√n�, a1, a2, . . . ]) xi =
√

n − mi

qi
and ζi+1 =

qi√
n − mi

=
√

n + mi

qi+1
.

So xi+1 = ζi+1 − ai+1 , where qiqi+1 = n − m2
i (which, inductively, defines qi+1) , ai+1 = �ζi+1�, so√

n + mi

qi+1
= ai+1 +

√
n − mi+1

qi+1
, and so mi+1 = ai+1qi+1 − mi (which, inductively, defines mi+1) . In

other words, the formulas qi+1 =
n − m2

i

qi
, ai+1 = �

√
n + mi

qi+1
� , and mi+1 = ai+1qi+1 − mi allow us to

inductively define each of these symbols, starting from m0 = �√n� and q0 = 1 .
The key to the proof is that −1 < ζ ′i < 0 for all i; the proof may be found at the end of the day’s notes.

This implies that � −1
ζ ′i+1

� = �ai − ζ ′i� = ai, since ai < ai − ζ ′i < ai +1 . So ai can be recovered from ζi+1 .

We know, from homework, that the continued fraction for
√

n and therefore for
√

n + �√n� (since
they agree in all but the first term), becomes periodic; past a certain point k, there is an m > 0 with
ak+s+m = ak+s for all s ≥ 0. That is, ζk = ζk+m . Let k and m be the smallest such numbers (i.e., k
= place where periodicity starts, m=length of the shortesst period). We claim: k = 0 . But this is just

because if k > 0, then ζk = ζk+m ⇒ ζ ′k = ζ ′k+m ⇒ ak−1 = �−1
ζ ′k

� = � −1
ζ ′k+m

� = ak+m−1 ⇒ 1
ζk−1 − ak−1

=

ζk = ζk+m =
1

ζk+m−1 − ak+m−1
=

1
ζk+m−1 − ak−1

⇒ ζk−1 = ζ(k−1)+m , contradicting our choice of k .

So k = 0 ; and so there is an m > 0 so that am+s = as for all s ≥ 0 . So
√

n + �√n� = [a0, . . . , am−1] =
[a0, a1, . . . , am−1, a0] . Note that a0 = 2�√n�, so

√
n = [�√n�, a1, . . . , am−1, 2�√n�].

Now back to Pell’s Equation! We know that if |N | <
√

n, then every solution to x2 − ny2 = N has
x

y
=

a convergent of
√

n. But as we have just seen,
√

n + �√n� = [2�√n�, a1, . . . , am−1] , and this will allow
us to shed light on h2

i − nk2
i , to understand Pell’s equation better.

√
n + �√n� = [2�√n�, a1, . . . , am−1] means (with a0 = �√n�) that

√
n = [a0, a1, . . . , am−1, 2a0]

Wherever we choose to stop the continued fraction expansion of
√

n,
√

n = [a0, . . . , as, ζs+1] =

[a0, . . . , as,

√
n + ms

qs+1
], we find that

√
n =

√
n+ms

qs+1
hs + hs−1

√
n+ms

qs+1
ks + ks−1

=
(
√

n + ms)hs + qs+1hs−1

(
√

n + ms)ks + qs+1ks−1
. Using this, we can calculate what h2

s − nk2
s

equals; we will do this next time.



Proof of −1 < ζ ′1 < 0: Note that ζi =
√

n + mi−1

qi
, so

ζi+1 =
1

ζi − ai
=

1
√

n+mi−1
qi

− ai

=
qi√

n + mi−1 − aiqi
=

qi
√

n − (mi−1 − aiqi+1)qi

n − (mi−1 − aiqi)2
. Then

ζ ′i =
−√

n + mi−1

qi
, and

1
ζ ′i − ai

=
1

−√
n+mi−1

qi
− ai

=
qi

(mi−1 − aiqi) −
√

n
=

qi((mi−1 − aiqi) +
√

n

(mi−1 − aiqi)2 − n
=

−qi
√

n − (mi−1 − aiqi+1)qi

n − (mi−1 − aiqi)2
= ζ ′i+1 .

But x = ζ0, so −1 < ζ ′0 < 0 ; then we have, by induction, −1 < ζ ′i ⇒ ζ ′i − ai < −1 ⇒ −1 <
1

ζ ′i − ai
=

ζ ′i+1 < 0 .


