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r has a repeating continued fraction expansion x = [ag, ... ,an,bo, ... ,bn] < © = r + 51/t for some

r,s € Q,t€Z . Last time: enough to show this for a = [bg,... ,bm] = [bo,... ,bm,a] . Then for
h/ h/ Oé—|-h/ B

oy bm] = 2 = 2l g0 | a® + KL, _ja = hl,a+ hl,_ , so a is the solution of
km kma + kmfl

a quadratic equation with rational coefficients, so o = 79 + soV/t , as desired. The converse (<)

direction follows an argument parallel to one of your homework questions; our further explorations will
not need this direction.

a++d a—+4d

In what follows, for x = , it will be useful to have the notation z’ =

for the conjugate

of x, that is, the other root of the quadratic having x as root. Our main result on periodic continued
fractions is: If x =\/n+ |/n], then x = [ag, .-, ax] is purely periodic.

To see this, note that ' = [\/n| — /1 ,s0 =1 < 2/ < 0. If we set x = [ag, ... ,a; + ;] = [ao, . .. ,ai, G
(so ¢; = — and a;41 = |[(;]) then from our homework we know that (since /n = [bg,b1,...] =
€
n—m; 7 n+m;
[CL()— Lﬁj7a17a27~"]> /LL:L and Ci-l—l: — \/_ .
i Vno—m; Qi+1

2
So wit1 = (it1 — @iy1 , Where ¢giy1 = n —m;

i
\/ﬁ+mi \/ﬁ—miﬂ

= aj4+1 + —— , and S0 M1 = a;+1¢i+1 — m; (which, inductively, defines m; 1) . In

qi+1 qi+1
Vn+m;
y Qi1 = [

i qi4+1
inductively define each of these symbols, starting from mg = |y/n] and ¢o =1 .

The key to the proof is that —1 < ¢ < 0 for all 4; the proof may be found at the end of the day’s notes.

(which, inductively, defines g;+1) , ai+1 = |(it1], so

n—m?

other words, the formulas ¢; 11 = |, and m;11 = a;41qi+1 — m; allow us to

This implies that | —
i+1

We know, from homework, that the continued fraction for y/n and therefore for \/n + [\/n| (since

they agree in all but the first term), becomes periodic; past a certain point k, there is an m > 0 with

Qktstm = agts for all s > 0. That is, (x = (x+m - Let k and m be the smallest such numbers (i.e., k

= place where periodicity starts, m=length of the shortesst period). We claim: k = 0 . But this is just
-1 -1 1
because if k > 0, then ¢y = Corm = ¢, = (opyy = a1 = [ =] = | | =apym1=> —"——=

| =la;— (] = a;, since a; < a; — ¢! < a;+1. So a; can be recovered from (; 1 .

1 1
Ck = Chgm = = = Ck—1 = Q(k—1)+m > contradicting our choice of k .
Chtm—1 = Qktm—1  Chm—1 = Qk—1
So k=0 ; and so there is an m > 0 so that a,,4+s = as for all s > 0. So /n+ |vn| = [ag, -, Gm-1] =

lag, a1, -+, Gm-1,ap] . Note that ag = 2|/n|,so  /n=[|v/n],a1,... ,am-1,2|/n]].

Now back to Pell’s Equation! We know that if |[N| < y/n, then every solution to z? — ny* = N has -
Y

a convergent of \/n. But as we have just seen, \/n + |\/n| = [2|v/n],a1,...,am—1] , and this will allow
us to shed light on h? — nk?, to understand Pell’s equation better.

vn+ |vn) = 2|v/n], a1, ... ,am_1] means (with ag = |/n]) that /n = [ag, a1, - .- , @m_1, 2a0]

Wherever we choose to stop the continued fraction expansion of \/n, v/n = [ag, ... ,as,(sp1] =
n-—+m
lag, ... ,as, b], we find that
qds+1
Vn+ms he +h
) : s—1 n+mg)hs + gs41hs— . .
o= Lt 0T (v )5+ ds s . Using this, we can calculate what h? — nk?

mk@ + ksfl (\/ﬁ + ms)ks + q‘e+1k371
s+1
equals; we will do this next time.



Proof of —1 < (] < 0: Note that ¢; = M
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But z = (p, so —1 < ¢} < 0 ; then we have, by induction, -1 < ¢/ = {/ —a; < -1 = -1 < z =
i i
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