

# Math 445 Number Theory

November 15, 2004

## Sums of four squares.

For every  $n \in \mathbb{N}$ , there are  $x, y, z, w \in \mathbb{Z}$  so that  $x^2 + y^2 + z^2 + w^2 = n$ .

Elements of the proof:  $(x_1^2 + y_1^2 + z_1^2 + w_1^2)(x_2^2 + y_2^2 + z_2^2 + w_2^2) = (x_1 x_2 + y_1 y_2 + z_1 z_2 + w_1 w_2)^2 + (x_1 y_2 - x_2 y_1 + z_2 w_1 - z_1 w_2)^2 + (x_1 z_2 - x_2 z_1 + y_1 w_2 - w_1 y_2)^2 + (x_1 w_2 - x_2 w_1 + y_2 z_1 - z_1 y_2)^2$

So we may focus on primes  $p$ .  $p = 2 = 1^2 + 1^2 + 0^2 + 0^2$ , so focus on odd primes. Then

*Proposition:*  $0 \leq x, y \leq (p-1)/2$  and  $x \neq y$  implies  $x^2 \not\equiv y^2 \pmod{p}$ . This is because  $p|x^2 - y^2 = (x-y)(x+y)$  implies  $p|x-y$  and  $-(p-1)/2 \leq x-y \leq (p-1)/2$  so  $x=y$ , or  $p|x+y$  and  $0 \leq x+y \leq p-1$  so  $x+y=0$  so  $x=y=0$ . Then

*Proposition:* For any  $a$ ,  $x^2$  and  $a - y^2$ , with  $0 \leq x, y \leq (p-1)/2$  must have a value, mod  $p$ , in common. For otherwise, since  $x^2$  and  $a - y^2$  each take on  $(p+1)/2$  different values,  $x^2$  and  $a - y^2$  would together take on  $p+1$  different values, mod  $p$ . So in particular,  $x^2 \equiv -1 - y^2$ , i.e.,  $x^2 + y^2 \equiv -1 \pmod{p}$  has a solution.

Then  $x^2 + y^2 + 1^2 + 0^2 = Mp$  for some  $M$ ; with the restrictions on  $x, y$  above, we have  $M < p$ . Choose the smallest positive  $M$  with  $Mp = x^2 + y^2 + z^2 + w^2$ . We claim:  $M = 1$  (so  $p = x^2 + y^2 + z^2 + w^2$  is a sum of 4 squares).

First,  $M$  is odd, since if  $M$  is even, then  $x^2 + y^2 + z^2 + w^2$  is even, so an even number of  $x, y, z, w$  are even. After renaming the variables to group them by parity, we have

$\frac{M}{2}p = (\frac{x-y}{2})^2 + (\frac{x+y}{2})^2 + (\frac{z-w}{2})^2 + (\frac{z+w}{2})^2$  where each of the numbers on the right are integers. If  $M > 1$  is odd, then choose  $-\frac{M}{2} \leq x_1, y_1, z_1, w_1 \leq \frac{M}{2}$  with  $x \equiv x_1 \pmod{M}$ , etc. Then  $x_1^2 + y_1^2 + z_1^2 + w_1^2 \equiv x^2 + y^2 + z^2 + w^2 \equiv 0 \pmod{M}$ , so  $x_1^2 + y_1^2 + z_1^2 + w_1^2 = NM$ ; since  $|x_1|, |y_1|, |z_1|, |w_1| < \frac{M}{2}$ ,  $x_1^2 + y_1^2 + z_1^2 + w_1^2 < M^2$ , so  $N < M$ . Note also that  $N > 0$ , since otherwise  $x_1 = y_1 = z_1 = w_1 = 0$ , so  $M|x, y, z, w$ , so  $M^2|x^2 + y^2 + z^2 + w^2 = Mp$ , so  $p|M$ , contradicting  $M < p$ . Then

$NM^2p = (x_1^2 + y_1^2 + z_1^2 + w_1^2)(x^2 + y^2 + z^2 + w^2) = (x_1 x + y_1 y + z_1 z + w_1 w)^2 + (x_1 y - x y_1 + z w_1 - z_1 w)^2 + (x_1 z - x z_1 + y_1 w - w_1 y)^2 + (x_1 w - x w_1 + y_1 z - z_1 y)^2 = a^2 + b^2 + c^2 + d^2$

and we can check that, mod  $M$ ,

$$a = x_1 x + y_1 y + z_1 z + w_1 w \equiv x^2 + y^2 + z^2 + w^2 \equiv 0, \quad b = x_1 y - x y_1 + z w_1 - z_1 w \equiv xy - xy + zw - zw \equiv 0,$$

$$c = x_1 z - x z_1 + y_1 w - w_1 y \equiv xz - xz + yw - yw \equiv 0, \text{ and } d = x_1 w - x w_1 + y_1 z - z_1 y \equiv xw - xw + yz - yz \equiv 0.$$

So  $a = MA, b = MB, c = MC, d = MD$  and  $NM^2p = M^2(A^2 + B^2 + C^2 + D^2)$  so  $A^2 + B^2 + C^2 + D^2 = Np$  with  $0 < N < M$ , a contradiction. So  $M = 1$ , as desired.