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Theorem: If abc is square-free, then ax2 + by2 + cz2 = 0 has a (non-trfvial!) solution
x, y, z ∈ Z ⇔ a, b, c do not all have the same sign, and each of the equations

w2 ≡ −ab (mod c), w2 ≡ −ac (mod b), w2 ≡ −bc (mod a) have solutions.

(⇐ :) After possible renaming variables and taking negatives, we may assume that a > 0
and b, c < 0 . Suppose r2 ≡ −ab (mod c) and aA ≡ 1 (mod c) . Then for any x, y ∈ Z,
mod c we have ax2 + by2 + cz2 ≡ ax2 + by2 ≡ aA(ax2 + by2) ≡ A(a2x2 + aby2) =
A(a2x2 − r2y2) = A(ax − ry)(ax + ry) ≡ (x − Ary + 0z)(ax + ry + 0z) . Similarly, mod
b (with s2 ≡ −ac) we have ax2 + by2 + cz2 ≡ (x + 0y − Asz)(ax + 0y + sz) and, mod a
(with t2 ≡ −bc and bB ≡ 1) we have ax2 + by2 + cz2 ≡ (0x + y − Btz)(0x + by + tz) .
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Then, mod abc , ax2 + by2 + cz2 ≡ (αx + βy + γz)(δx + εy + ηz) . Then we need a
Lemma : If λ, µ, ν ∈ R and positive, with λµν = M ∈ Z , then for any α, β, γ ∈ Z,
αx + βy + γz ≡ 0 (mod M) has a solution with x, y, z ∈ Z , (x, y, z) �= (0, 0, 0), and
|x| ≤ �λ�, |y| ≤ �µ�, |z| ≤ �ν� .
The proof is simply that, among 0 ≤ x ≤ �λ�, 0 ≤ y ≤ �µ�, 0 ≤ z ≤ �ν�, we have
(1+ �λ�)(1+ �µ�)(1+ �ν�) > λµν = M triples (x, y, z) to choose from, so αx+βy +γz ≡
αx1 + βy1 + γz1 for some pair of triples, and so α(x − x1) + β(y − y1) + γ(z − z1) ≡ 0.

Setting λ =
√

bc, µ =
√−ac, ν =

√−ab, we then can solve αx + βy + γz ≡ 0 (mod abc)
(so ax2 + by2 + cz2 ≡ 0 (mod abc)) with |x| ≤ √

bc, |y| ≤ √−ac, |z| ≤ √−ab . But
since abc is square-free, none of these square roots are integers (unless they are 1). So
x2 ≤ bc, y2 ≤ −ac, z2 ≤ −bc, and equality occurs for any only if the corresponding
right-hand side is 1.
Then, unless b = c = −1, we have x2 < bc and abc|ax2 + by2 + cz2 with ax2 + by2 + cz2 ≤
ax2 < abc and ax2+by2+cz2 ≥ by2+cz2 > b(−ac)+c(−ab) = −2abc . [The last inequality
is reversed, since b, c < 0. It is strict, unless a = 1 as well.] So ax2 + by2 + cz2 = 0
or = −abc . In the first case we are done; in the second, setting X = −by + xz, Y =
ax+yz, Z = z2+ab we have aX2 +bY 2+cZ2 = a(−by+xz)2 +b(ax+yz)2 +c(z2 +ab)2 =
(ab2y2 − 2abxyz + ax2z2) + (a2bx2 + 2abxyz + by2z2) + (cz4 + 2abcz2 + a2b2c) = (ax2 +
by2 +cz2)z2 +ab2y2 +a2bx2 +2abcz2 +a2b2c = −abcz2 +ab2y2 +2abcz2 +a2bx2 +a2b2c =
ab(ax2 +by2 +cz2)+a2b2c = (ab)(−abc)+(ab)(abc) = 0. This gives a non-trivial solution,
unless 0 = −by + xz, 0 = ax + yz, 0 = z2 + ab, so z2 = −ab, so a = 1, b = −1 since ab is
square-free; and then (x, y, z) = (1, 1, 0) is a solution.

Finally, in the special case b = c = −1, we have w2 ≡ −bc = −1 (mod a), has a solution,
so every prime factor p of a also has w2 ≡ −1 (mod p), so p ≡ −1 (mod 4) for every
prime factor, so y2 + z2 = a has a solution, so (1, y, z) is a solution to ax2 + by2 + cy2 =
ax2 − y2 − z2 = 0, as desired.


