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Theorem: If abc is square-free, then az? + by? +cz? = 0 has a (non-trfvial!) solution z,y,2 € Z < a,b,c
do not all have the same sign, and each of the equations
w? = —ab (mod ¢),w? = —ac (mod b),w? = —bc (mod a)  have solutions.

(= :) WOLOG «z,y, z have no common factor. If (¢,x) > 1, then choosing some prime p|c, z we have
p|—ax?—cz? = by? but p fb, so p|y. Then p?|az?+by? = —cz?, so either p?|c or p|z (both contradictions)
. 50 (¢,z) = 1. Choosing u so that uz =1 (mod ¢) we have, mod ¢, 0 = (u?b)(ax? + by?) = (ab)(ux)? +

(uby)? = ab+ (uby)? , so w? = (uby)? = —ab . A similar argument establishes the other two congruences.
So, for example, 3522 + 23y? — 622 = 0 has no integer solutions, because 35-23 - —6 = —2-3-5-7-23
is square-free and w? = —23 - —6 = 138 (mod 35) has no solutions, since <$> = <g> = —1, so
w? = 138 (mod 5) has no solutions. ~ On the other hand,  52% + 7y? = 132? has integer solutions,
since <%> = (6—75> = <_1—:;5> =1, as we can readily compute; they are, respectively, <%> =1, (;) =

(~1)° =1, and (%) - (133)2 —1.

And if abc is not square-free? If d?| one of a, b, ¢, say d?|a, then we write a = d?a’ and if az?+by*+cz? = 0
, then a’(dz)?+by?+c2? = 050 a’ X?+bY?+cZ? = 0 has a solution. Conversely, if a’ X?+bY?+cZ? = 0,
then a’d?X2+bd?Y2+cd*Z? = 0 = aX?+b(dY)?*+c(dZ)? , so ax®+by*+cz? = 0 has solution. So we can
test for solutions to ax?+by?+cz? = 0 by checking a’ X2+bY?+cZ? = 0, with a’bc = abc/d? < abc . And
if d| two of a, b, ¢, say d|a, b, then a = dA,b = dB and if ax® +by? +cz? = 0, then Adx?+ Bdy?+c2?> =0
so Ad?z?+ Bd?y*+cdz? = 0 = A(dx)?+ B(dy)?+ (cd)z? = 0 with AB(cd) = abe/d < abc . Conversely, if
AX?4+BY?+(cd)Z? = 0, then AdX?+BdY?+cd?*Z? =0 = aX?+bY?+c(dZ)? = 050 ar®+by*+cz?> =0
has a solution. So by induction, we can test whether az? + by? + cz? = 0 has solutions by testing if some
a'x? +b'y? + /2% =0, with a’b’¢’ square-free, has solutions.

If we actually want to find the solutions, we can use an approach from geometry. We’ll start by illustrating

p) 2
this with an equation we already know how to solve: z2+y%—22? = 0. If we write this as <£) + (g) =1,
z z

we find ourselves looking for rational solutions to a? + b = 1, i.e., rational points on the unit circle.
The key idea is to look at how lines intersect the circle 22 +y? —1 = 0. If we set y = rx + s and plug in,
we have a quadratic equation z? + (ra + s)? — 1 = 0 in x, describing the x-coordinates of the points of
intersection of line and circle. If we know one of these points (zg, yo), then (z —zo)|(z? + (ra +s)? — 1),
and so the other factor of 2+ (rz+s)?—1 is also linear, and setting it equal to 0 gives the x-coordinate of
the other point of intersection. But the real key idea is that if 2, yo and r are all rational (i.e., we know
a rational point on the circle, e.g., (1,0)) then the other point of intersection has rational coordinates,
because that other linear factor has rational coefficients. Conversely, the slope of a line between points
with rational coordinates is rational; this means that this process will find all rational points on the unit
circle.

Putting this into practice, if we start with (zg,yo) = (1,0) , which is a solution to 2 +y? = 1, and look at
the line through (1, 0) with rational slope r, having equation y = r(x — 1) = r& —r , and plug in, we need
tosolve 22 +72(22 —22+1)-1=0= (1+rH)2? -2r22+(r* —1) = (2 - 1) ((r*+ 1)z —(r?*=1)),s0 x = 1
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, which implies (by plugging into y = rx — r) that y =

our original solution) or ¥ = ——
( & ) r2 41

u? — v? 2uv

u2 + 2 ’ u2 + 2
to 22 + y? = 22 . Which are all of the Pythagorean triples, as we have seen before!

u
we write r = — and simplify, we have (x,y) = ( ), giving solutions (u? —v?, 2uv, u? +v?)
v



