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Theorem: If abc is square-free, then ax2 + by2 + cz2 = 0 has a (non-trfvial!) solution x, y, z ∈ Z ⇔ a, b, c do not all have the same sign, and
each of the equations

w2 ≡ −ab (mod c), w2 ≡ −ac (mod b), w2 ≡ −bc (mod a) have solutions.

(⇒ :) WOLOG x, y, z have no common factor. If (c, x) > 1, then choosing some prime p|c, x we have p| − ax2 − cz2 = by2 but p � |b, so p|y.
Then p2|ax2 + by2 = −cz2, so either p2|c or p|z (both contradictions) . so (c, x) = 1. Choosing u so that ux ≡ 1 (mod c) we have, mod c,
0 ≡ (u2b)(ax2 + by2) = (ab)(ux)2 + (uby)2 ≡ ab+ (uby)2 , so w2 = (uby)2 ≡ −ab . A similar argument establishes the other two congruences.

So, for example, 35x2 +23y2 − 6z2 = 0 has no integer solutions, because 35 · 23 · −6 = −2 · 3 · 5 · 7 · 23 is square-free and w2 ≡ −23 · −6 = 138

(mod 35) has no solutions, since
(138

5

)
=

(3
5

)
= −1, so w2 ≡ 138 (mod 5) has no solutions. On the other hand, 5x2 + 7y2 = 13z2

has integer solutions, since
(91
5

)
=

(65
7

)
=

(−35
13

)
= 1 , as we can readily compute; they are, respectively,

(1
5

)
= 1,

(2
7

)
= (−1)6 = 1 ,

and
( 4
13

)
=

( 2
13

)2

= 1 .

And if abc is not square-free? If d2| one of a, b, c, say d2|a, then we write a = d2a′ and if ax2 + by2 + cz2 = 0 , then a′(dx)2 + by2 + cz2 = 0
so a′X2 + bY 2 + cZ2 = 0 has a solution. Conversely, if a′X2 + bY 2 + cZ2 = 0, then a′d2X2 + bd2Y 2 + cd2Z2 = 0 = aX2 + b(dY )2 + c(dZ)2

, so ax2 + by2 + cz2 = 0 has solution. So we can test for solutions to ax2 + by2 + cz2 = 0 by checking a′X2 + bY 2 + cZ2 = 0 , with
a′bc = abc/d2 < abc . And if d| two of a, b, c, say d|a, b, then a = dA, b = dB and if ax2 + by2 + cz2 = 0 , then Adx2 + Bdy2 + cz2 = 0
so Ad2x2 + Bd2y2 + cdz2 = 0 = A(dx)2 + B(dy)2 + (cd)z2 = 0 with AB(cd) = abc/d < abc . Conversely, if AX2 + BY 2 + (cd)Z2 = 0,
then AdX2 + BdY 2 + cd2Z2 = 0 = aX2 + bY 2 + c(dZ)2 = 0 so ax2 + by2 + cz2 = 0 has a solution. So by induction, we can test whether
ax2 + by2 + cz2 = 0 has solutions by testing if some a′x2 + b′y2 + c′z2 = 0 , with a′b′c′ square-free, has solutions.

If we actually want to find the solutions, we can use an approach from geometry. We’ll start by illustrating this with an equation we already

know how to solve: x2 + y2 − z2 = 0 . If we write this as
(x

z

)2

+
(y

z

)2

= 1, we find ourselves looking for rational solutions to a2 + b2 = 1 ,
i.e., rational points on the unit circle.
The key idea is to look at how lines intersect the circle x2 + y2 − 1 = 0 . If we set y = rx + s and plug in, we have a quadratic equation
x2 +(rx+ s)2 −1 = 0 in x, describing the x-coordinates of the points of intersection of line and circle. If we know one of these points (x0, y0),
then (x− x0)|(x2 + (rx+ s)2 − 1), and so the other factor of x2 + (rx+ s)2 − 1 is also linear, and setting it equal to 0 gives the x-coordinate
of the other point of intersection. But the real key idea is that if x0, y0 and r are all rational (i.e., we know a rational point on the circle, e.g.,
(1, 0)) then the other point of intersection has rational coordinates, because that other linear factor has rational coefficients. Conversely, the
slope of a line between points with rational coordinates is rational; this means that this process will find all rational points on the unit circle.

Putting this into practice, if we start with (x0, y0) = (1, 0) , which is a solution to x2+y2 = 1, and look at the line through (1, 0) with rational
slope r, having equation y = r(x − 1) = rx− r , and plug in, we need to solve x2 + r2(x2 − 2x + 1)− 1 = 0 = (1 + r2)x2 − 2r2x + (r2 − 1) =

(x− 1)((r2 + 1)x− (r2 − 1)), so x = 1 (our original solution) or x =
r2 − 1
r2 + 1

, which implies (by plugging into y = rx− r) that y =
2r

r2 + 1
. If

we write r =
u

v
and simplify, we have (x, y) = (

u2 − v2

u2 + v2
,

2uv

u2 + v2
), giving solutions (u2 − v2, 2uv, u2 + v2) to x2 + y2 = z2 . Which are all of

the Pythagorean triples, as we have seen before!


