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Theorem: If abc is square-free, then az? + by? + cz? = 0 has a (non-trfvial!) solution z,y,2 € Z < a,b, c do not all have the same sign, and
each of the equations
w? = —ab (mod ¢),w? = —ac (mod b),w? = —bc (mod a)  have solutions.

(= :) WOLOG z,y, z have no common factor. If (¢,z) > 1, then choosing some prime p|c, z we have p| — ax® — c2? = by? but p /b, so ply.

Then p?|az? + by? = —cz?, so either p?|c or p|z (both contradictions) . so (c,z) = 1. Choosing u so that uz = 1 (mod ¢) we have, mod e,

0 = (u?b)(ax?® + by?) = (ab)(ux)? + (uby)? = ab+ (uby)? , so w? = (uby)? = —ab . A similar argument establishes the other two congruences.

So, for example, 3522 + 23y? — 62° = 0 has no integer solutions, because 35-23- —6 = —2-3-5-7-23 is square-free and w? = —23- —6 = 138
138 3

(mod 35) has no solutions, since <?> = <5> = —1, so w? = 138 (mod 5) has no solutions. On the other hand, 522 + 7y? = 1322

91 65 —35 1 2
has integer solutions, since <—> = (—) = ( ) = 1, as we can readily compute; they are, respectively, <—> =1, <—> = (—1)6 =1,

5 7 13 5 7
4 2\2
wd (Y= (221
13 13

And if abe is not square-free? If d?| one of a, b, ¢, say d*|a, then we write a = d?a’ and if az? + by? + cz? = 0, then a/(dx)? + by? + c22 = 0
so a'X? +bY? + cZ? = 0 has a solution. Conversely, if a’ X? + bY? + ¢Z? = 0, then a/d*X? + bd?’Y? + cd*Z? = 0 = aX? + b(dY)? + c(dZ)?
, 50 ax? + by? + cz? = 0 has solution. So we can test for solutions to az? + by? + cz?> = 0 by checking a’X? + bY? + cZ%? = 0 , with
a’bc = abe/d?* < abc . And if d| two of a,b,c, say d|a,b, then a = dA,b = dB and if az?® + by? + cz?> = 0 , then Adz? + Bdy? + c2? = 0
so Ad%z? + Bd?y* + cdz? = 0 = A(dwz)? + B(dy)? + (cd)z? = 0 with AB(cd) = abc/d < abc . Conversely, if AX? + BY? + (ed)Z? = 0,
then AdX? + BdY? + cd*Z? = 0 = aX? +bY? + ¢(dZ)? = 0 so ax? + by? + c2? = 0 has a solution. So by induction, we can test whether
ax? + by? + cz? = 0 has solutions by testing if some a’z2 + b'y? + ¢’2%2 = 0 , with a’b'c’ square-free, has solutions.

If we actually want to find the solutions, we can use an approach from geometry. We’ll start by illustrating this with an equation we already

N 2 2
know how to solve: 22 + y? — 22 = 0 . If we write this as <—> + <y> = 1, we find ourselves looking for rational solutions to a® +b> =1,
z z
i.e., rational points on the unit circle.

The key idea is to look at how lines intersect the circle 22 + y2 — 1 = 0 . If we set y = rz + s and plug in, we have a quadratic equation
2%+ (rz+ )2 —1 = 0 in x, describing the z-coordinates of the points of intersection of line and circle. If we know one of these points (g, ¥o),
then (z — z0)|(z? + (rz + s)? — 1), and so the other factor of 2 + (rz + s)? — 1 is also linear, and setting it equal to 0 gives the xz-coordinate
of the other point of intersection. But the real key idea is that if 2, yo and r are all rational (i.e., we know a rational point on the circle, e.g.,
(1,0)) then the other point of intersection has rational coordinates, because that other linear factor has rational coefficients. Conversely, the
slope of a line between points with rational coordinates is rational; this means that this process will find all rational points on the unit circle.

Putting this into practice, if we start with (xq, o) = (1,0) , which is a solution to 22 +y? = 1, and look at the line through (1, 0) with rational
slope r, having equation y = r(z — 1) = rz — r , and plug in, we need to solve 2% + r?(22 — 22 +1) —1=0= (1 +r?)2?> = 2r2z + (1> — 1) =

2 1 2
(x —1)((r*+ 1)z — (r> = 1)), so & = 1 (our original solution) or z = 77’2 N which implies (by plugging into y = rz —r) that y = ——— —Ti; T If
r r

u? — v? 2uv

w2 + 02’ u? + 02

we write 7 = — and simplify, we have (z,y) = ( ), giving solutions (u? — v?, 2uv, u® 4+ v?) to 22 + y? = 22 . Which are all of
v

the Pythagorean triples, as we have seen before!



