

Math 445 Number Theory

December 1, 2004

We can now apply our geometric approach to more general polynomial equations, in particular to *cubic* equations. $f(x, y)$ has rational coefficients, and the line $y = mx + r$ meets $\mathcal{C}_f(\mathbb{R})$ in two rational solutions, then $p(x) = f(x, mx + r)$ is a cubic polynomial with rational coefficients and two rational roots, and so, as before, the third root is also rational, and gives a third rational point on $\mathcal{C}_f(\mathbb{R})$. But in this case there are three ways to find such lines:

- (a): find two distinct rational points, and the line through them,
- (b): find a double point (x_0, y_0) in $\mathcal{C}_f(\mathbb{R})$, then any line with rational slope through (x_0, y_0) will give $f(x, mx + r)$ has x_0 as a double root,
- (c): find a rational point (x_0, y_0) , then for the tangent line to the graph of $\mathcal{C}_f(\mathbb{R})$, $f(x, mx + r)$ has x_0 as a double root.

Taken in turn, these can in many cases find infinitely many rational points on a cubic curve.

For example, on the curve $x^3 + y^3 = 9$, starting from the point $(2, 1)$, with $f(x, y) = x^3 + y^3 - 9$, we can compute $f_x(2, 1) = 12, f_y(2, 1) = 3$, and so the tangent line is $(12, 3) \bullet (x - 2, y - 1) = 0$ so $y = 9 - 4x$, and so $x^3 + (9 - 4x)^3 - 9 = (x - 2)^2(180 - 63x)$, giving a new solution $(20/7, -17/7)$. Repeatedly using their tangent lines, we can find further solutions.

A double point example: $f(x, y) = y^2 - x^3 + 2x^2 = 0$ has $f_x = -3x^2 + 4x, f_y = 2y$, and all three are 0 at $(0, 0)$. If we look at the lines through $(0, 0)$ with rational slope, $y = mx$, and solve $m^2x^2 - x^3 + 2x^2 = x^2((m^2 + 2) - x) = 0$ gives $x = m^2 + 2$ and $y = m^3 + 2m$.

Why do tangent lines $y = mx + b$ give double roots of $f(x, mx + b) = 0$ at the point of tangency? This is just a little (multivariate) calculus. If (a, b) is our rational point, then the equation for its tangent line is

$$f_x(a, b)(x - a) + f_y(a, b)(y - b) = 0, \text{ and so we wish to solve}$$

$$p(x) = f(x, -\frac{f_x(a, b)}{f_y(a, b)}(x - a) + b) = 0, \text{ which has } p(a) = 0 \text{ and}$$

$$p'(a) = f_x(a, b) + f_y(a, b)L'(a) = f_x(a, b) + f_y(a, b)(-\frac{f_x(a, b)}{f_y(a, b)}) = 0, \text{ as desired.}$$

Integer points on $\mathcal{C}_f(\mathbb{R})$, $f(x, y) = x^3 + y^3 - M$? $x^3 + y^3 = M = (x + y)(x^2 - xy + y^2) = AB$, then $|M| \geq |B| = |x^2 - xy + y^2| = (x - \frac{y}{2})^2 + \frac{3}{4}y^2 \geq \frac{3}{4}y^2$ so $|y| \leq \frac{2}{\sqrt{3}}\sqrt{|M|}$

(and, by symmetry, $|x| \leq \frac{2}{\sqrt{3}}\sqrt{|M|}$), so we can check for integer solutions, by hand.