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We can now apply our geometric approach to more general polynomial equations, in
particular to cubic equations. f(z,y) has rational coefficients, and the line y = mx +r
meets C¢(R) in two rational solutions, then p(x) = f(x, ma +r) is a cubic polynomial
with rational coefficients and two rational roots, and so, as before, the third root is
also rational, and gives a third rational point on C¢(R). But in this case there are
three ways to find such lines:

(a): find two distinct rational points, and the line through them,

(b): find a double point (zo,yo) in C¢(R), then any line with rational slope through
(0, y0) wWill give f(x, mzx + r) has z(y as a double root,

(c): find a rational point (zo,yo), then for the tangent line to the graph of C¢(R),
f(x,mx +r) has z¢ as a double root.

Taken in turn, these can in many cases find infinitely many rational points on a cubic
curve.

For example, on the curve 22 + y3 = 9, starting from the point (2,1), with f(z,y) =
z3 + y3 — 9, we can compute f,(2,1) = 12, f,(2,1) = 3, and so the tangent line is
(12,3)e(z—2,y—1) =0soy = 9—4z, and so 3+ (9—4x)3 -9 = (z—2)?(180 — 63x),
giving a new solution (20/7,—17/7) . Repeatedly using their tangent lines, we can
find further solutions.

A double point example: f(z,y) = y?> — x> + 22> = 0 has f, = —32% + 4z, f, = 2y,
and all three are 0 at (0,0). If we look at the lines through (0,0) with rational slope,
y = mz, and solve m?x? — 2% + 222 = 2?((m? + 2) — ) = gives v = m? + 2 and
y =m> + 2m.

Why do tangent lines y = max + b give double roots of f(x, mxz + b) = 0 at the point
of tangency? This is just a little (multivariate) calculus. If (a, b) is our rational point,
then the equation for its tangent line is

fz(a,b)(x —a) + fy(a,b)(y —b) =0, and so we wish to solve
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(and, by symmetry, |z| < 7 |M|), so we can check for integer solutions, by hand.

) =0, as desired.



