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Elliptic curves: f(z,y) = y? — (az® +bz* + cx +d) = y*> — q(z) C;(R) is an elliptic curve if f has no linear factors and C¢(R) has no singular
points.

Verifying this, over R can be hard! But if we work over C, we have
Fact: C;(C) is an elliptic curve (which implies that C¢(R) is) < ¢(z) has no repeated root.

An elliptic curve is a cubic curve. So two points on the curve A, B can be used to find a third, C, as C' = the other point lying on L NC¢(R),
where L = the line through A and B . This can be used to define a product on C¢(R) , C' = AB . (If A= B, we can use L = the tangent line
through A.) This product, unfortunately, is not very well-behaved; for example it isn’t associative. An example: of AA = B, then AB = A,
so A(AB) = AA = B. But (AA)B = BB = the third point on the tangent line through B, which is can’t be A, since then the line through
A and B is tangent at both A and B, so the cubic equation f(x, mz + r) = 0 has two double roots!

But this can be remedied, by introducing a second binary operation, +, defined as follows. Let 0 € C¢(R) be any point, and define, for
A,B € Cs(R), A+ B =0(AB) . This addition is associative, and in fact, turns C;(R) into an abelian group! In particular, we have

A+ B =B+ A (since AB = C = BA is the third point on the line through A, B)
A+ 0= A (since if A0 = C, then A+ 0=0(A0) =0C = A, since 0, A, C are the three points of some L NC¢(R)

For every A there is exactly one B with A+ B =0; A+ B = 0(AB) = 0 means that the line through 0 and AB is tangent at 0. There is only
only such line, so AB must be 00. So B = A(AB) = A(00) is determined by A, and we can check that in fact A+ B = 0(AB) = 0(00) =0 .

Associativity is the fun one! See the second page.....

But what does this mean? It means that an elliptic curve Cs(R forms an (abelian) group under this addition! And if 0 is chosen with rational
coordinates (assuming C;(R has a rational point), then the chord-and-tangent claculations in the addition will always give rational points
when starting from rational points. That is, C¢(Q is also an abelian group under this operation!

For the case of elliptic curves, with polynomial f(x,y) = y* — (az® + bz? + cx + d), a particularly nice choice for 0 is the “point at infinity”,
since it simplifies many calculations. A formal approach to this requires us to projectivize everything, which means to think, instead of f,
of the homogeneous polynomial F(x,y) = y?z — (az® + bx?z + cxz? + d2?), which has solution (0, 1,0), which “represents” vertical lines in
the plane. But the upshot of choosing 0 at infinity is that if A = (ay,as2), then 0A = (a1, —a2) (since the line from A to “vertical lines” is
the vertical line through A !). This allows us to write formulas for A + B = 0(AB) and 2A = 0(AA) . For the “normalized” polynomials
y?=a234+ar+b ,if A= (ay,az) and B = (by,by), then a little computation with chords and tangents reveals:
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Note that, in the first case, when a; = b1, and in the second case, when as = 0, that the resulting point is the point at infinity (the line used
in the calculation is a vertical line). So we must treat [0: 1 : 0] (as it is usually written) as a (rational) point on the curve!



A+(B+C) = (A+B)+C : this is the fun one! This saysthat  0(A(0(BC))) =0((0(AB))C) , so we need to show that  A(0(BC)) =
(0(AB))C . And how do you show this?! Well, we use a little

Lemma: If f(x,y),g(x,y) are cubic polynomials, and Py, ..., Py € C;(RNCy(R, with Py, P5, Ps lying on a line L (which is not contained in
C¢(R), then there is a quadratic polynomial g(z,y) with Py,..., Py € C4(R .

And the point to this result is that, typically, you can’t expect 6 points chosen at random to lie on a quadratic (i.e., on a conic section). so
this is really saying something.

Setting the proof of this aside for the moment, to show associativity, start with a cubic curve C;(R (which contains no line), and set

P, =B,Py,=AB,P; = A (allon aline Ly : Li(z,y) =0)

P, =B, P;=0,P; =0(BC) (on a line Ly(z,y) = 0)

P3 = C, P6 — Q(AB),PQ = (Q(AB))C (OIl a line Lg(l‘,y) =0

These points all lie on C¢(R (since A, B, C, 0 do), and they also lie on C4(R , where g(z,y) = L1(z,y)L2(z, y)L3(x,y) . Furthermore, Py, P>, Ps
lie on a line L. In the generic case, where all 9 of these points are distinct, the lemma lets us conclude that the remaining 6 points Py, ..., Py
lie on a quadratic. But! Py, P5, Ps also lie on a linel’ , so L' C Cs¢R, since L hits the quadratic in 3 > 2=degree(q) points. So, ¢ is really

a product of linear functions, implying that Pr, Ps, Py lie on a line, since otherwise one of these lies on L, implying that it hits C;(R in
4 > 3=degree(f) points, so L' C C¢(R, a contradiction. But this means that PrPs = Py, i.e., A(Q(BC)) = (0(AB))C'!

If these 9 points are not all distinct, we appeal to “continuity”, by finding a nearby generic situation; the limits of 3 sequences of points lying
on lines is 3 points on a line. The details of this can (sort of) be found in the text.....



