

Math 445 Number Theory

December 3, 2004

Elliptic curves: $f(x, y) = y^2 - (ax^3 + bx^2 + cx + d) = y^2 - q(x)$ $\mathcal{C}_f(\mathbb{R})$ is an *elliptic curve* if f has no linear factors and $\mathcal{C}_f(\mathbb{R})$ has no singular points.

Verifying this, over \mathbb{R} can be hard! But if we work over \mathbb{C} , we have

Fact: $\mathcal{C}_f(\mathbb{C})$ is an elliptic curve (which implies that $\mathcal{C}_f(\mathbb{R})$ is) $\Leftrightarrow q(x)$ has no repeated root.

An elliptic curve is a cubic curve. So two points on the curve A, B can be used to find a third, C , as $C =$ the other point lying on $L \cap \mathcal{C}_f(\mathbb{R})$, where $L =$ the line through A and B . This can be used to define a product on $\mathcal{C}_f(\mathbb{R})$, $C = AB$. (If $A = B$, we can use $L =$ the tangent line through A .) This product, unfortunately, is not very well-behaved; for example it isn't associative. An example: of $AA = B$, then $AB = A$, so $A(AB) = AA = B$. But $(AA)B = BB =$ the third point on the tangent line through B , which is can't be A , since then the line through A and B is tangent at both A and B , so the cubic equation $f(x, mx + r) = 0$ has two double roots!

But this can be remedied, by introducing a second binary operation, $+$, defined as follows. Let $\underline{0} \in \mathcal{C}_f(\mathbb{R})$ be any point, and define, for $A, B \in \mathcal{C}_f(\mathbb{R})$, $A + B = \underline{0}(AB)$. This addition is associative, and in fact, turns $\mathcal{C}_f(\mathbb{R})$ into an abelian group! In particular, we have

$A + B = B + A$ (since $AB = C = BA$ is the third point on the line through A, B)

$A + \underline{0} = A$ (since if $A\underline{0} = C$, then $A + \underline{0} = \underline{0}(A\underline{0}) = \underline{0}C = A$, since $\underline{0}, A, C$ are the three points of some $L \cap \mathcal{C}_f(\mathbb{R})$)

For every A there is exactly one B with $A + B = \underline{0}$; $A + B = \underline{0}(AB) = \underline{0}$ means that the line through $\underline{0}$ and AB is tangent at $\underline{0}$. There is only one such line, so AB must be $\underline{0}\underline{0}$. So $B = A(AB) = A(\underline{0}\underline{0})$ is determined by A , and we can check that in fact $A + B = \underline{0}(AB) = \underline{0}(\underline{0}\underline{0}) = \underline{0}$. Associativity is the fun one! See the second page.....

But what does this mean? It means that an elliptic curve $\mathcal{C}_f(\mathbb{R})$ forms an (abelian) group under this addition! And if $\underline{0}$ is chosen with rational coordinates (assuming $\mathcal{C}_f(\mathbb{R})$ has a rational point), then the chord-and-tangent calculations in the addition will always give rational points when starting from rational points. That is, $\mathcal{C}_f(\mathbb{Q})$ is also an abelian group under this operation!

For the case of elliptic curves, with polynomial $f(x, y) = y^2 - (ax^3 + bx^2 + cx + d)$, a particularly nice choice for $\underline{0}$ is the “point at infinity”, since it simplifies many calculations. A formal approach to this requires us to projectivize everything, which means to think, instead of f , of the homogeneous polynomial $F(x, y) = y^2z - (ax^3 + bx^2z + cxz^2 + dz^3)$, which has solution $(0, 1, 0)$, which “represents” vertical lines in the plane. But the upshot of choosing $\underline{0}$ at infinity is that if $A = (a_1, a_2)$, then $\underline{0}A = (a_1, -a_2)$ (since the line from A to “vertical lines” is the vertical line through A !). This allows us to write formulas for $A + B = \underline{0}(AB)$ and $2A = \underline{0}(AA)$. For the “normalized” polynomials $y^2 = x^3 + ax + b$, if $A = (a_1, a_2)$ and $B = (b_1, b_2)$, then a little computation with chords and tangents reveals:

$$A + B = \left(\frac{m^2 - b}{a} - a_1 - b_1, -(a_2 + m\left(\frac{m^2 - b}{a} - 2a_1 - b_1\right)) \right), \text{ where } m = \frac{b_2 - a_2}{b_1 - a_1}.$$

$$2A = \left(\frac{M^2 - b}{a} - 2a_1, -(a_2 + m\left(\frac{M^2 - b}{a} - 3a_1\right)) \right), \text{ where } M = \frac{3a_1^2 + 2aa_1 + b}{2a_2}$$

Note that, in the first case, when $a_1 = b_1$, and in the second case, when $a_2 = 0$, that the resulting point is the point at infinity (the line used in the calculation is a vertical line). So we must treat $[0 : 1 : 0]$ (as it is usually written) as a (rational) point on the curve!

$A + (B + C) = (A + B) + C$: this is the fun one! This *says* that $\underline{0}(A(\underline{0}(BC))) = \underline{0}((\underline{0}(AB))C)$. And how do you show this?! Well, we use a little

$\underline{0}(AB)C$, so we need to show that $A(\underline{0}(BC)) =$

Lemma: If $f(x, y), g(x, y)$ are cubic polynomials, and $P_1, \dots, P_9 \in \mathcal{C}_f(\mathbb{R} \cap \mathcal{C}_g(\mathbb{R})$, with P_1, P_2, P_3 lying on a line L (which is *not* contained in $\mathcal{C}_f(\mathbb{R})$), then there is a quadratic polynomial $q(x, y)$ with $P_4, \dots, P_9 \in \mathcal{C}_q(\mathbb{R})$.

And the point to this result is that, typically, you can't expect 6 points chosen at random to lie on a quadratic (i.e., on a conic section). so this is really saying something.

Setting the proof of this aside for the moment, to show associativity, start with a cubic curve $\mathcal{C}_f(\mathbb{R})$ (which contains no line), and set

$P_1 = B, P_4 = AB, P_7 = A$ (all on a line $L_1 : L_1(x, y) = 0$)

$P_2 = B, P_5 = \underline{0}, P_8 = \underline{0}(BC)$ (on a line $L_2(x, y) = 0$)

$P_3 = C, P_6 = \underline{0}(AB), P_9 = (\underline{0}(AB))C$ (on a line $L_3(x, y) = 0$)

These points all lie on $\mathcal{C}_f(\mathbb{R})$ (since $A, B, C, \underline{0}$ do), and they also lie on $\mathcal{C}_g(\mathbb{R})$, where $g(x, y) = L_1(x, y)L_2(x, y)L_3(x, y)$. Furthermore, P_1, P_2, P_3 lie on a line L . In the generic case, where all 9 of these points are distinct, the lemma lets us conclude that the remaining 6 points P_4, \dots, P_9 lie on a quadratic. But! P_4, P_5, P_6 also lie on a line L' , so $L' \subseteq \mathcal{C}_f \cap \mathbb{R}$, since L hits the quadratic in $3 > 2 = \text{degree}(q)$ points. So, q is really a product of linear functions, implying that P_7, P_8, P_9 lie on a line, since otherwise one of these lies on L' , implying that it hits $\mathcal{C}_f(\mathbb{R})$ in $4 > 3 = \text{degree}(f)$ points, so $L' \subseteq \mathcal{C}_f(\mathbb{R})$, a contradiction. But this means that $P_7P_8 = P_9$, i.e., $A(\underline{0}(BC)) = (\underline{0}(AB))C$!

If these 9 points are not all distinct, we appeal to "continuity", by finding a nearby generic situation; the limits of 3 sequences of points lying on lines is 3 points on a line. The details of this can (sort of) be found in the text.....