

Math 445 Number Theory

December 6, 2004

Factoring integers using elliptic curves: the Elliptic Curve Method

The idea: use elliptic curves to factor large integers. It uses the group operation on $\mathcal{C}_f(\mathbb{Q})$, and is based on the fact that for a finite group G , with order n , every element $g \in G$ satisfies $n \cdot g = 0$.

Starting point: **the Pollard $(p-1)$ -test.** If N is a (large) integer, with prime factor p , then by Fermat, $(a, p) = 1$ implies $p|a^{p-1} - 1$, and so the g.c.d. $(a^{p-1} - 1, N) > 1$. If we guess that $p-1$ consists of a product of fairly small primes, we can test $(a^n - 1, N)$ for n a (large) product of fairly small numbers, to arrange $1 < (a^n, N) < N$, giving us a proper factor of N . In practice, we start with a randomly chosen a , and a sequence of fairly small numbers r_n , like $r_n = n$. We then **form the sequence** $a_1 = a$, $a_2 = a_1^{r_1} = a^{r_1}$, $a_3 = a_2^{r_2} = a^{r_1 r_2}$, and **inductively**, $a_{i+1} = a_i^{r_i} = a^{r_1 \cdots r_i}$, and **compute** $g_i = (a_i - 1, N)$. Since $a_i - 1|a_{i+1} - 1$ for every i , so $g_i|g_{i+1}$ for every i , we compute the g.c.d.'s only occasionally (since we expect to get $g_i = 1$ for awhile). The process will stop, since for any prime divisor p of N , $p-1$ will divide $r_1 \cdots r_n = 1 \cdot 2 \cdots n$ for some n , so $g_n > 1$. It might be that $g_n = N$, though, and so the test fails; we then restart with a different a . Typically we must wait until i is around the smallest of the largest prime factors of the $p-1$, where p ranges among all of the prime factors of N . The problem: this could be fairly large!

For the ECM, the basic idea is to take the machinery we have developed for **computing on elliptic curves, and do all of the calculations mod p , for some (unknown!) prime dividing N** . In practice, this really means we do the calculations mod N . Using the formulas for addition we have from above, we can create an addition formula for points in what we choose to call $\mathcal{C}_f(\mathbb{Z}_p)$. The formulas involve division; mod p , we use multiplication by the inverse (which we find by the Euclidean algorithm). We still need to know that this form of addition on $\mathcal{C}_f(\mathbb{Z}_p)$ gives us a group; this can be verified directly from the formulas (including associativity!).

$$A + B = \left(\frac{m^2 - b}{a} - a_1 - b_1, -(a_2 + m \left(\frac{m^2 - b}{a} - 2a_1 - b_1 \right)) \right), \text{ where } m = \frac{b_2 - a_2}{b_1 - a_1}$$

$$2A = \left(\frac{M^2 - b}{a} - 2a_1, -(a_2 + m \left(\frac{M^2 - b}{a} - 3a_1 \right)) \right), \text{ where } M = \frac{3a_1^2 + 2aa_1 + b}{2a_2}$$

To implement the ECM to find a factor of an integer N , we pick an elliptic curve $\mathcal{C}_f(\mathbb{Z}_p)$, for $f(x, y) = y^2 - (x^2 + ax + b)$, by **choosing values for a and b , and a point A on the curve**. [Usually we work the other way around; pick a point, such as $A = (1, 1)$, and choose the values of a and b accordingly.] $\mathcal{C}_f(\mathbb{Z}_p)$ is a group of some finite (but unknown) order; the idea is that we expect that for some choices of a and b , it has order a product of small primes, and so a calculation like the one in the Pollard $(p-1)$ -test will quickly succeed. But this is where the fun starts!

We **compute high multiples $r_1 \cdots r_n A$ of the point A** ; as we did long ago, we write $r_1 \cdots r_n = 2^{i_1} + \cdots + 2^{i_k}$ and compute $2^{i_j} A$ by repeated doubling, and then adding together the $2^{i_j} A$ together. We want to compute mod p , but we can't; we don't know p ! Instead we compute mod N (while pretending we are computing in $\mathcal{C}_f(\mathbb{Z}_p)$). But this will not always work; not every integer has an inverse mod N . So **we might eventually fail to be able to compute a step. But this is a good thing!** **We will fail, because the quantity we need to invert, $b_1 - a_1$, is not relatively prime to N , i.e., $(b_1 - a_1, N) > 1$** (or, when doubling, $((2a_2), N) > 1$). Unless this is a multiple of N we have found what we want; a proper factor of N !

In point of fact, this is what the method is designed to do; we don't want to find the order of A in $\mathcal{C}_f(\mathbb{Z}_p)$, since the order of this group really has no relation to N . It can, in fact, be any number between $p+1-2\sqrt{p}$ and $p+1+2\sqrt{p}$. What we really want to do is to discover that we can't compute the order, because the formulas break down and finds a factor of N , before the computation finishes. The point is that by varying the curve, we should be able to stumble across an f for which $\mathcal{C}_f(\mathbb{Z}_p)$ will yield a computation that breaks down. We typically keep the size of $r_1 \cdots r_n$ around \sqrt{N} , so it is at least the expected size of $\mathcal{C}_f(\mathbb{Z}_p)$ for p the smallest prime dividing N , and vary the function f .