
Math 445 Number Theory
December 6, 2004

Factoring integers using elliptic curves: the Elliptic Curve Method

The idea: use elliptic curves to factor large integers. It uses the group operation on Cf (Q) , and is
based on the fact that for a finite group G, with order n, every element g ∈ G satisfies n · g = 0.
Starting point: the Pollard (p − 1)-test. If N is a (large) integer, with prime factor p, then by
Fermat, (a, p) = 1 implies p|ap−1 − 1, and so the g.c.d. (ap−1 − 1, N) > 1. If we guess that p − 1
consists of a product of fairly small primes, we can test (an − 1, N) for n a (large) product of fairly
small numbers, to arrange 1 < (an, N) < N , giving us a proper factor of N . In practice, we start
with a randomly chosen a, and a sequence of fairly small numbers rn, like rn = n. We then form
the sequence a1 = a, a2 = ar1

1 = ar1 , a3 = ar2
2 = ar1r2 , and inductively, ai+1 = ari

i = ar1···ri , and
compute gi = (ai − 1, N). Since ai − 1|ai+1 − 1 for every i, so gi|gi+1 for every i, we compute the
g.c.d.’s only occasionally (since we expect to get gi = 1 for awhile). The process will stop, since for
any prime divisor p of N , p − 1 will divide r1 · · · rn = 1 · 2 · · ·n for some n, so gn > 1. It might be
that gn = N , though, and so the test fails; we then restart with a different a. Typically we must
wait until i is around the smallest of the largest prime factors of the p − 1, where p ranges among
all of the prime factors of N . The problem: this could be fairly large!

For the ECM, the basic idea is to take the machinery we have developed for computing on elliptic
curves, and do all of the calculations mod p, for some (unknown!) prime dividing N . In practice, this
really means we do the calculations mod N . Using the formulas for addition we have from above, we
can create an addition formula for points in what we choose to call Cf (Zp) . The formulas involve
division; mod p, we use multiplication by the inverse (which we find by the Euclidean algorithm).
We still need to know that this form of addition on Cf (Zp) gives us a group; this can be verified
directly from the formulas (including associativity!).

A + B = (
m2 − b

a
− a1 − b1,−(a2 + m(

m2 − b

a
− 2a1 − b1)) , where m =

b2 − a2

b1 − a1

2A = (
M2 − b

a
− 2a1,−(a2 + m(

M2 − b

a
− 3a1)) , where M =

3a2
1 + 2aa1 + b

2a2

To implement the ECM to find a factor of an integer N , we pick an elliptic curve Cf (Zp) , for
f(x, y) = y2 − (x2 + ax + b) , by choosing values for a and b, and a point A on the curve. [Usually
we work the other way around; pick a point, such as A = (1, 1), and choose the values of a and b
accordingly.] Cf (Zp) is a group of some finite (but unknown) order; the idea is that we expect that
for some choices of a and b, it has order a product of small primes, and so a calculation like the one
in the Pollard (p − 1)-test will quickly succeed. But this is where the fun starts!
We compute high multiples r1 · · · rnA of the point A; as we did long ago, we write r1 · · · rn =
2i1 + · + 2ik and compute 2ij A by repeated doubling, and then adding together the 2ij A together.
We want to compute mod p, but we can’t; we don’t know p ! Instead we compute mod N (while
pretending we are computing in Cf (Zp)). But this will not always work; not every integer has an
inverse mod N . So we might eventually fail to be able to compute a step. But this is a good thing!
We will fail, because the quantity we need to invert, b1 − a1, is not relatively prime to N , i.e.,
(b1 − a1, N) > 1 (or, when doubling, ((2a2), N) > 1). Unless this is a multiple of N we have
found what we want; a proper factor of N !
In point of fact, this is what the method is designed to do; we don’t want to find the order of A
in Cf (Zp), since the order of this group really has no relation to N . It can, in fact, be any number
between p+1−2

√
p and p+1+2

√
p. What we really want to do is to discover that we can’t compute

the order, because the formulas break down and finds a factor of N , before the computation finishes.
The point is that by varying the curve, we should be able to stumble across an f for which Cf (Zp)
will yield a computation that breaks down. We typically keep the size of r1 · · · rn around

√
N , so it

is at least the expected size of Cf (Zp) for p the smallest prime dividing N , and vary the function f .

