Math 445
Handy facts for the second exam

Don’t forget the handy facts from the first exam!

Quadratic Reciprocity.

Quadratic Residues: If 22 = a (mod n) has a solution, a is a quadratic residue modulo

n . If it doesn’t, a is a quadratic non-residue modulo n . Euler’s Criterion gives us a test:
—1

if p is a prime, then a is a quadratic residue mod n < o= =1 (mod p).

The Legendre symbol; for p an odd prime, 0 if pla
<2) =<1 if a is a quadratic residue mod p

p . . . .
—1 if a is a quadratic non-residue mod p

By Euler’s criterion, (E) =q"T (mod p) .
p

Basic facts: (%) = (—1)pT_1, <%’> = <%> <§>, and <“+pk> <%> .
Lemma of Gauss: Let p be an odd prime and (a,p) = 1. For 1 < k

with 0 <ap <p—-1.Let A={k:a,> %}, andletn_\A]
in A . Then <g):(—1)”.
p

1 let ak = pty + a

< B
the number of elements

Theorem: Let p be an odd prime and (a,2p) = 1 (i.e., (a,p) = 1 and a is odd). Let

t=3,% %] . Then (%) — (—1)t.

Along the way, this gives: (%) = (-1)" = (-1)"=

* . And putting it all together, we get

Gauss’ Law of Quadratic Reciprocity:

If p and ¢ are distinct odd primes, then (23) <g> = (—1)(;%1)(%1) .
q/ \p

The facts
<§) <%) = (—1)(%1)(%1) for distinct odd primes, (%) = (—1)p2871, and <_71) = (-1)"=

allow us to carry out the calculations of Legendre symbols much more simply than Euler’s
criterion would.

For @ odd and (4,Q) =1,if Q = - - qp is the prime factorization of (), then the Jacobi
symbol <§> is defined to be % = <q%>
Some basic properties:

If (A,Q) =1= (B,Q) then <?B> = (S) <g>
If (A4,Q) = 1 = (A, Q') then (Qg,> _ <8> <QA>
If (PP',QQ’) = 1 then (PjPQ) - (i)




Warning! If () is not prime, then <%) = 1 does not mean that 2> = A (mod Q) has a

solution. Most of it’s properties are identical to the Legendre symbol:
If Q is odd, then (g) = (-1)%"

If Q is odd, then (%) = (-5

If P and Q are both odd, and (P,Q) = 1, then (5)(§) = (-1)(*z)(")

Since the Jacobi symbol has essentially the same properties as the Legendre symbol, we
can compute them in essentially the same way; extract factors of 2 from the top (and —1),
and use reciprocity to compute the rest. The advantage: we don’t need to factor the top
any further, any odd number will work fine.

Interlude: > i % diverges.

We showed: the sum of the reciprocals of the primes < N is > In(In(N)) — 4 . In fact,

1
as n — 00, ( Z —) — In(In(n)) converges to a finite constant M, known as the

p prime,p<n
Meussel-Mertens constant. 1t’s value is, approximately, 0.26149721284764278... .

Continued Fractions.

If we look at each line of the calculation of g.c.d of a and b,
a = bQO + To, b= Toq1 + T1y vy Th—2 = Tn—1Q4n + Tny, 'n = Tn—14n+1 +0
they can we re-written as
a ro b r T r r
—ZQO+—07—:Q1+—17---nQZQn+ nv =
b b 1o To Tn—1 Tn—1 Tn-1
When we put these together, we get a continued fraction expansion of a/b
a 1

* —_ =
() b q0+q1+ 1

= gn+1

"'+‘1n+1

which, for the sake of saving space, we will denote (qo, g1, - - . , gnt1). Note that, conversely,
given a collection qq, ... ,q,+1 of integers, we can construct a rational number, which we
denote (qo,q1,--. ,qn+1), by the formula (*).

Formally, we can try to do the same thing with any real number zx; i.e, “compute” the
g.cd. of z and 1 :

r=1-a90+1r9, 1 =r9ay +7r1, ..., "Tno = Tn_1a, + 1, where the a;’s are integers.
Unlike for the rational number a/b, if z is irrational, we shall see that this process does
not terminate, giving us an “infinite” continued fraction expansion of z, (ag,a1,as...) .
Our main goal is to figure out what this sequence of integers means!

First, a slightly different perspective:

x = ap+1ro with 0 < ry < 1 means ag = |x] is the largest integer < z; |blah| is the greatest
integer function. 1 = rgaj +r1 with 0 < r; < rg means 1/ro = a1+ (r1/r9) = a1 +x1 with
0 <z <1,80 ¢ = |1/ro]. In general, the process of extracting the continued fraction
expansion of z looks like:



(**)  x=|x]+zo=0a0+mo, 1/x0=|1/20] +21=01+21,...,

Vzpy=|1/xpn1]+zp=0an+xp,...
If we stop this at any finite stage, then we can, just as in the case of a rational number
a/b, reassemble the pieces to give

T =(ap, a1, ,Gp-1,0n + Tpn) = (A0, A1, ... ,Ap—1,0pn, 1/Ty)

If we ignore the last z,, we find that (ag,a1,...,a,_1,a,) is a rational number (proof:
induction on n), called the n'* convergent of x. The integers a,, are called the n** partial
quotients of x. Note that since 0 < z¢p < 1, 1/z¢ > 1, so a; > 1. This is true for all later
calculations, so a; > 1 for all ¢ > 1. This sort of continued fraction expansion is what is
called stmple. We will, in our studies, only deal with simple continued fractions.
For example, we can compute that, for z = v/2, ag = 1, 79 = V2 — 1, 1/29 = V2 + 1,
a; = 2, 11 = V2 — 1 = 1z, so the pattern will repeat, and v/2 has continued fraction
expansion (1,2,2/...). By computing some partial quotients, one can show that 7 has
expansion that begins (3,7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,...) . Euler showed that e
=(2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...) .
By looking at the expression for a continued fraction, that we started with, it should be
apparent that

1
(ag, a1, ... an_1,a,) = (ag,a1,... ,ap_1+ —) = ap +
G <a17--' 7an—17an>
From this it follows, for example, that (ag, a1, ... ,an—1,a,) = {(ag,a1,... ,apn_1,a, —1,1)
. But these are the only such equalities:
Prop: If {(ag,a1,...,a,) = {(bo,b1,...,by) and ay,b,, > 1, then n = m and a; = b; for
alli=20,...,n.
Computing (ag, a1, ... ,ay) from (ag, a1, ... ,ap_1):

(ag,a1,...,ap) = %, where h_o =0,k_9=0,h_1 =1,k_1 =0, and for 7 > 0,
! hi = aih;—1 + hi—2 and k; = a;k;_1 + k;_».

The proof is by induction. This, in turn implies:

For every i > 0, h;k;—1 — hi_1k; = (=1)""! (which implies that (h;, k;) = 1), and

hiki_g — hi_Qki = (—1)Za2~ .

Note: None of these formulas actually require that the a;’s be integers.

1.
for z = (ag,a1,... ,an_1,0n + x,) = (ap,a1,... ,ap_1, an, x_>’ if we set
n
<a07 ai,... ,0n-1, an) = Tn,
then these formulas imply that
1
Ton < Tonto and ro,_1 > ron,yq for every n, and roy — 191 = ———
k2n71k2n

And since the numerator of
T — (g, @1y . yAp_1,0n) = (G0, A1, ... ,Apn_1,0n + Tp) — (A0, Q14 ... ,Ap—1,0p),
we can compute, is Ty, (hy_1kp—2 — hp—2k,,) (and the denomenator is positive), we have
that re, < x < rop41. So since ro, — rop—1 — 0 as n — oo, we find that r, — z, In
particular, |z — rp—1| < |rp—1 — 70| = 1/(kn—1ky,) for every n. This implies that if the

3



x,, are never 0 (i.e., the continued fraction process is really an infinite one), then since
0 < lkn(x —1y)| = |knx — hy| < 1/kp—1, we find that z is not rational.

This last observation requires us to know that the k,, are getting arbitrarily large. But note
that since a; > 1 for every ¢ > 0, k_1 = 0,kg = 1, and k; = a;k;_1 + ki_o > ki1 + ki_o
for every i > 1, we can see by induction that k, > the n*" Fibonacci number (which is
defined by F; = F;_1 + F;_3), and the Fibonacci numbers grow very fast!

Based on these facts, we denote z = lim (ag,...,a,) = (ag,a1,...) . Then
n—oo

<a0,a1,...> = ag +

which in turn implies that:
If <CLO,CL1, .. > = <b0,b1, .. .>, then a; = bz for all 7.

hy, . : :
If 1 <b <k, then |z — %| > |x — k:_| for all integers a; in fact if 1 < b < kj, 41, then
|bx — a| > |knpx — hy,| for all integers a.

%, then % = ﬁ for some n.

Repeating continued fraction expansions: A continued fraction (ag, a1, . ..) will repeat (i.e,
Ay, = At for all n > N) precisely when z,_1 = Z,,4m—1, since from (**) above, all of the
calculations of the partial quotients, starting from some fixed number, will depend only on
that fixed number. A real number x has a repeating continued fraction expansion if and
only if x is an (irrational) root of a quadratic equation, what we call a quadratic irrational.
In particular,

Ifx¢@anda,b€Z,With|x—%|<

For any non-square positive integer n, v/n + |\/n| = (2ag,a1,...an,) is purely periodic.
This implies that \/n = (ag, a1, . . . am, 2a0)

Pell’s Equation.

It turns out that the continued fraction expansion of /n can help us find the integer
solutions x, y of the equation

(¥5) 22 —ny? =N
for fixed values of n and N. This equation is known as Pell’s equation.
First the less interesting cases. If n < 0, then any solution to N = x2 — ny? > 22 + ¢?
has |z, |y| < v/N, which can be found by inspection. If n = m? for some m, then N =
2% — m?y? = (x — my)(z + my), so x — my, z + my both divide N, so, e.g., their sum, 2z
divides N2. We can then find all possible z, and so all solutions, by inspection. We now
focus on finding solutions for n > 1 not a perfect square. \/n is therefore irrational.

Then if 1 < N < /n is not a perfect square, then N = 22 — ny? implies that
T N 1 r h
[Vn ——|

N < < ™ f
= ——, s0o — = — for some m.
y' eyl -yl 2vny? 292y km

(The same, it turns out, is true for —/n < N < —1.) But which m?

Vvn = {ag, a1, ...am,2ap) means that /n = (ag, ai,...am,ap + /n). In general, at any
point where we stop computing the continued fraction of \/n, we find that

n+a 1 n—+a
= <b0,b1,...b8,\/_T+), where L = Yt

T b




(so a and b take on only finitely many values, because x4 does). But then we can compute

that
Vi =
(kg + ko

In particular, solutions to 2 — ny? = 1 exist, because b = 1 occurs as the denomenator of
x; fori=m+1,2m+1,3m~+1,.... These are either all odd (if m is even), or every other
one is odd. For these values, i — 1 is even, so h? —nk? = b(h;k;—1 —h;_1k;) = (—=1)""tb=1

(Y + By

, which implies that h? — nk2 = b(heks_1 — hs_1ks) = (—1)"71b .

There is an alternative approach to generating solutions to (¥***). If we know that 2% —
ny? = N and 23 — ny2 = 1, then

(2 = ny?) (2§ —nyg)™ = N = (x — v/ny)(zo — v/nyo)™ (z + v/ny)(zo + /nyo)™
But (22 — ny?) (2% —ny2)™ = A — /nB for some A, B, and then (22 + ny?)(x3 + nyd)™ =
A + y/nB (because of the properties of conjugates of quadratic irrationals). Then
(A—\/nB)(A+ /nB) = A> —nB?*=N .



