

Math 445

Handy facts for the second exam

Don't forget the handy facts from the first exam!

Quadratic Reciprocity.

Quadratic Residues: If $x^2 \equiv a \pmod{n}$ has a solution, a is a *quadratic residue* modulo n . If it doesn't, a is a *quadratic non-residue* modulo n . Euler's Criterion gives us a test: if p is a prime, then a is a quadratic residue mod $n \Leftrightarrow a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.

The *Legendre symbol*; for p an odd prime,

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } p|a \\ 1 & \text{if } a \text{ is a quadratic residue mod } p \\ -1 & \text{if } a \text{ is a quadratic non-residue mod } p \end{cases}$$

By Euler's criterion, $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$.

Basic facts: $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$, $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$, and $\left(\frac{a+pk}{p}\right) = \left(\frac{a}{p}\right)$.

Lemma of Gauss: Let p be an odd prime and $(a, p) = 1$. For $1 \leq k \leq \frac{p-1}{2}$ let $ak = pt_k + a_k$ with $0 \leq a_k \leq p-1$. Let $A = \{k : a_k > \frac{p}{2}\}$, and let $n = |A|$ = the number of elements in A . Then $\left(\frac{a}{p}\right) = (-1)^n$.

Theorem: Let p be an odd prime and $(a, 2p) = 1$ (i.e., $(a, p) = 1$ and a is odd). Let $t = \sum_{j=1}^{\frac{p-1}{2}} \lfloor \frac{aj}{p} \rfloor$. Then $\left(\frac{a}{p}\right) = (-1)^t$.

Along the way, this gives: $\left(\frac{2}{p}\right) = (-1)^n = (-1)^{\frac{p^2-1}{8}}$. And putting it all together, we get

Gauss' Law of Quadratic Reciprocity:

If p and q are distinct odd primes, then $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(\frac{p-1}{2})(\frac{q-1}{2})}$.

The facts

$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(\frac{p-1}{2})(\frac{q-1}{2})}$ for distinct odd primes, $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$, and $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$

allow us to carry out the calculations of Legendre symbols much more simply than Euler's criterion would.

For Q odd and $(A, Q) = 1$, if $Q = q_1 \cdots q_k$ is the prime factorization of Q , then the *Jacobi symbol* $\left(\frac{A}{Q}\right)$ is defined to be $\left(\frac{A}{Q}\right) = \left(\frac{A}{q_1}\right) \cdots \left(\frac{A}{q_k}\right)$.

Some basic properties:

If $(A, Q) = 1 = (B, Q)$ then $\left(\frac{AB}{Q}\right) = \left(\frac{A}{Q}\right)\left(\frac{B}{Q}\right)$

If $(A, Q) = 1 = (A, Q')$ then $\left(\frac{A}{QQ'}\right) = \left(\frac{A}{Q}\right)\left(\frac{A}{Q'}\right)$

If $(PP', QQ') = 1$ then $\left(\frac{P'P^2}{Q'Q^2}\right) = \left(\frac{P'}{Q'}\right)$

Warning! If Q is not prime, then $\left(\frac{A}{Q}\right) = 1$ does *not* mean that $x^2 \equiv A \pmod{Q}$ has a solution. Most of its properties are identical to the Legendre symbol:

If Q is odd, then $\left(\frac{-1}{Q}\right) = (-1)^{\frac{Q-1}{2}}$

If Q is odd, then $\left(\frac{2}{Q}\right) = (-1)^{\frac{Q^2-1}{8}}$

If P and Q are both odd, and $(P, Q) = 1$, then $\left(\frac{P}{Q}\right)\left(\frac{Q}{P}\right) = (-1)^{(\frac{P-1}{2})(\frac{Q-1}{2})}$

Since the Jacobi symbol has essentially the same properties as the Legendre symbol, we can compute them in essentially the same way; extract factors of 2 from the top (and -1), and use reciprocity to compute the rest. The advantage: we don't need to factor the top any further, any odd number will work fine.

Interlude: $\sum_{p \text{ prime}} \frac{1}{p}$ diverges.

We showed: the sum of the reciprocals of the primes $\leq N$ is $\geq \ln(\ln(N)) - 4$. In fact, as $n \rightarrow \infty$, $(\sum_{p \text{ prime}, p \leq n} \frac{1}{p}) - \ln(\ln(n))$ converges to a finite constant M , known as the *Meissel-Mertens constant*. Its value is, approximately, 0.26149721284764278... .

Continued Fractions.

If we look at each line of the calculation of g.c.d of a and b ,

$$a = bq_0 + r_0, b = r_0q_1 + r_1, \dots, r_{n-2} = r_{n-1}q_n + r_n, r_n = r_{n-1}q_{n+1} + 0$$

they can we re-written as

$$\frac{a}{b} = q_0 + \frac{r_0}{b}, \frac{b}{r_0} = q_1 + \frac{r_1}{r_0}, \dots, \frac{r_{n-2}}{r_{n-1}} = q_n + \frac{r_n}{r_{n-1}}, \frac{r_n}{r_{n-1}} = q_{n+1}$$

When we put these together, we get a *continued fraction expansion* of a/b

$$(*) \quad \frac{a}{b} = q_0 + \cfrac{1}{q_1 + \cfrac{1}{q_2 + \cfrac{1}{\dots + \cfrac{1}{q_{n+1}}}}}$$

which, for the sake of saving space, we will denote $\langle q_0, q_1, \dots, q_{n+1} \rangle$. Note that, conversely, given a collection q_0, \dots, q_{n+1} of integers, we can construct a rational number, which we denote $\langle q_0, q_1, \dots, q_{n+1} \rangle$, by the formula $(*)$.

Formally, we can try to do the same thing with any real number x ; i.e, "compute" the g.c.d. of x and 1 :

$$x = 1 \cdot a_0 + r_0, 1 = r_0a_1 + r_1, \dots, r_{n-2} = r_{n-1}a_n + r_n, \text{ where the } a_i \text{'s are integers.}$$

Unlike for the rational number a/b , if x is irrational, we shall see that this process does not terminate, giving us an "infinite" continued fraction expansion of x , $\langle a_0, a_1, a_2 \dots \rangle$. Our main goal is to figure out what this sequence of integers means!

First, a slightly different perspective:

$x = a_0 + r_0$ with $0 \leq r_0 < 1$ means $a_0 = \lfloor x \rfloor$ is the largest integer $\leq x$; $\lfloor \text{blah} \rfloor$ is the *greatest integer function*. $1 = r_0a_1 + r_1$ with $0 \leq r_1 < r_0$ means $1/r_0 = a_1 + (r_1/r_0) = a_1 + x_1$ with $0 \leq x_1 < 1$, so $q_1 = \lfloor 1/r_0 \rfloor$. In general, the process of extracting the continued fraction expansion of x looks like:

$$(**) \quad x = \lfloor x \rfloor + x_0 = a_0 + x_0, \quad 1/x_0 = \lfloor 1/x_0 \rfloor + x_1 = a_1 + x_1, \dots, \\ 1/x_{n-1} = \lfloor 1/x_{n-1} \rfloor + x_n = a_n + x_n, \dots$$

If we stop this at any finite stage, then we can, just as in the case of a rational number a/b , reassemble the pieces to give

$$x = \langle a_0, a_1, \dots, a_{n-1}, a_n + x_n \rangle = \langle a_0, a_1, \dots, a_{n-1}, a_n, 1/x_n \rangle$$

If we ignore the last x_n , we find that $\langle a_0, a_1, \dots, a_{n-1}, a_n \rangle$ is a rational number (proof: induction on n), called the n^{th} convergent of x . The integers a_n are called the n^{th} partial quotients of x . Note that since $0 \leq x_0 < 1$, $1/x_0 > 1$, so $a_1 \geq 1$. This is true for all later calculations, so $a_i \geq 1$ for all $i \geq 1$. This sort of continued fraction expansion is what is called *simple*. We will, in our studies, only deal with simple continued fractions.

For example, we can compute that, for $x = \sqrt{2}$, $a_0 = 1$, $x_0 = \sqrt{2} - 1$, $1/x_0 = \sqrt{2} + 1$, $a_1 = 2$, $x_1 = \sqrt{2} - 1 = x_0$, so the pattern will repeat, and $\sqrt{2}$ has continued fraction expansion $\langle 1, 2, 2, \dots \rangle$. By computing some partial quotients, one can show that π has expansion that begins $\langle 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, \dots \rangle$. Euler showed that $e = \langle 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, \dots \rangle$.

By looking at the expression for a continued fraction, that we started with, it should be apparent that

$$\langle a_0, a_1, \dots, a_{n-1}, a_n \rangle = \langle a_0, a_1, \dots, a_{n-1} + \frac{1}{a_n} \rangle = a_0 + \frac{1}{\langle a_1, \dots, a_{n-1}, a_n \rangle}$$

From this it follows, for example, that $\langle a_0, a_1, \dots, a_{n-1}, a_n \rangle = \langle a_0, a_1, \dots, a_{n-1}, a_n - 1, 1 \rangle$. But these are the only such equalities:

Prop: If $\langle a_0, a_1, \dots, a_n \rangle = \langle b_0, b_1, \dots, b_m \rangle$ and $a_n, b_m > 1$, then $n = m$ and $a_i = b_i$ for all $i = 0, \dots, n$.

Computing $\langle a_0, a_1, \dots, a_n \rangle$ from $\langle a_0, a_1, \dots, a_{n-1} \rangle$:

$$\langle a_0, a_1, \dots, a_n \rangle = \frac{h_n}{k_n}, \text{ where } h_{-2} = 0, k_{-2} = 0, h_{-1} = 1, k_{-1} = 0, \text{ and for } i \geq 0, \\ h_i = a_i h_{i-1} + h_{i-2} \text{ and } k_i = a_i k_{i-1} + k_{i-2}.$$

The proof is by induction. This, in turn implies:

For every $i \geq 0$, $h_i k_{i-1} - h_{i-1} k_i = (-1)^{i-1}$ (which implies that $(h_i, k_i) = 1$), and $h_i k_{i-2} - h_{i-2} k_i = (-1)^i a_i$.

Note: None of these formulas actually require that the a_i 's be integers.

$$\text{for } x = \langle a_0, a_1, \dots, a_{n-1}, a_n + x_n \rangle = \langle a_0, a_1, \dots, a_{n-1}, a_n, \frac{1}{x_n} \rangle, \text{ if we set} \\ \langle a_0, a_1, \dots, a_{n-1}, a_n \rangle = r_n,$$

then these formulas imply that

$$r_{2n} < r_{2n+2} \text{ and } r_{2n-1} > r_{2n+1} \text{ for every } n, \text{ and } r_{2n} - r_{2n-1} = \frac{1}{k_{2n-1} k_{2n}}$$

And since the numerator of

$$x - \langle a_0, a_1, \dots, a_{n-1}, a_n \rangle = \langle a_0, a_1, \dots, a_{n-1}, a_n + x_n \rangle - \langle a_0, a_1, \dots, a_{n-1}, a_n \rangle,$$

we can compute, is $x_n(h_{n-1}k_{n-2} - h_{n-2}k_{n-1})$ (and the denominator is positive), we have that $r_{2n} < x < r_{2n+1}$. So since $r_{2n} - r_{2n-1} \rightarrow 0$ as $n \rightarrow \infty$, we find that $r_n \rightarrow x$. In particular, $|x - r_{n-1}| < |r_{n-1} - r_n| = 1/(k_{n-1}k_n)$ for every n . This implies that if the

x_n are never 0 (i.e., the continued fraction process is really an infinite one), then since $0 < |k_n(x - r_n)| = |k_n x - h_n| < 1/k_{n-1}$, we find that x is not rational.

This last observation requires us to know that the k_n are getting arbitrarily large. But note that since $a_i \geq 1$ for every $i > 0$, $k_{-1} = 0$, $k_0 = 1$, and $k_i = a_i k_{i-1} + k_{i-2} \geq k_{i-1} + k_{i-2}$ for every $i \geq 1$, we can see by induction that $k_n \geq$ the n^{th} Fibonacci number (which is defined by $F_i = F_{i-1} + F_{i-2}$), and the Fibonacci numbers grow very fast!

Based on these facts, we denote $x = \lim_{n \rightarrow \infty} \langle a_0, \dots, a_n \rangle = \langle a_0, a_1, \dots \rangle$. Then

$$\langle a_0, a_1, \dots \rangle = a_0 + \frac{1}{\langle a_1, a_2, \dots \rangle}$$

which in turn implies that:

If $\langle a_0, a_1, \dots \rangle = \langle b_0, b_1, \dots \rangle$, then $a_i = b_i$ for all i .

If $1 \leq b < k_n$, then $|x - \frac{a}{b}| \geq |x - \frac{h_n}{k_n}|$ for all integers a ; in fact if $1 \leq b < k_{n+1}$, then $|bx - a| \geq |k_n x - h_n|$ for all integers a .

If $x \notin \mathbb{Q}$ and $a, b \in \mathbb{Z}$, with $|x - \frac{a}{b}| < \frac{1}{2b^2}$, then $\frac{a}{b} = \frac{h_n}{k_n}$ for some n .

Repeating continued fraction expansions: A continued fraction $\langle a_0, a_1, \dots \rangle$ will repeat (i.e., $a_n = a_{n+m}$ for all $n \geq N$) precisely when $x_{n-1} = x_{n+m-1}$, since from (**) above, all of the calculations of the partial quotients, starting from some fixed number, will depend only on that fixed number. A real number x has a repeating continued fraction expansion if and only if x is an (irrational) root of a quadratic equation, what we call a *quadratic irrational*. In particular,

For any non-square positive integer n , $\sqrt{n} + \lfloor \sqrt{n} \rfloor = \langle \overline{2a_0, a_1, \dots, a_m} \rangle$ is *purely periodic*. This implies that $\sqrt{n} = \langle a_0, \overline{a_1, \dots, a_m, 2a_0} \rangle$

Pell's Equation.

It turns out that the continued fraction expansion of \sqrt{n} can help us find the integer solutions x, y of the equation

$$(***) \quad x^2 - ny^2 = N$$

for fixed values of n and N . This equation is known as *Pell's equation*.

First the less interesting cases. If $n < 0$, then any solution to $N = x^2 - ny^2 \geq x^2 + y^2$ has $|x|, |y| \leq \sqrt{|N|}$, which can be found by inspection. If $n = m^2$ for some m , then $N = x^2 - m^2 y^2 = (x - my)(x + my)$, so $x - my, x + my$ both divide N , so, e.g., their sum, $2x$ divides N^2 . We can then find all possible x , and so all solutions, by inspection. We now focus on finding solutions for $n \geq 1$ not a perfect square. \sqrt{n} is therefore irrational.

Then if $1 \leq N \leq \sqrt{n}$ is not a perfect square, then $N = x^2 - ny^2$ implies that

$$|\sqrt{n} - \frac{x}{y}| = \frac{N}{|x + \sqrt{ny}| \cdot |y|} < \frac{N}{2\sqrt{ny}^2} < \frac{1}{2y^2}, \text{ so } \frac{x}{y} = \frac{h_m}{k_m} \text{ for some } m.$$

(The same, it turns out, is true for $-\sqrt{n} \leq N \leq -1$.) But which m ?

$\sqrt{n} = \langle a_0, \overline{a_1, \dots, a_m, 2a_0} \rangle$ means that $\sqrt{n} = \langle a_0, a_1, \dots, a_m, a_0 + \sqrt{n} \rangle$. In general, at any point where we stop computing the continued fraction of \sqrt{n} , we find that

$$\sqrt{n} = \langle b_0, b_1, \dots, b_s, \frac{\sqrt{n} + a}{b} \rangle, \text{ where } \frac{1}{x_s} = \frac{\sqrt{n} + a}{b}$$

(so a and b take on only finitely many values, because x_s does). But then we can compute that

$$\sqrt{n} = \frac{(\frac{\sqrt{n}+a}{b})h_s + h_{s-1}}{(\frac{\sqrt{n}+a}{b})k_s + k_{s-1}}, \text{ which implies that } h_s^2 - nk_s^2 = b(h_s k_{s-1} - h_{s-1} k_s) = (-1)^{s-1}b.$$

In particular, solutions to $x^2 - ny^2 = 1$ exist, because $b = 1$ occurs as the denominator of x_i for $i = m+1, 2m+1, 3m+1, \dots$. These are either all odd (if m is even), or every other one is odd. For these values, $i-1$ is even, so $h_i^2 - nk_i^2 = b(h_i k_{i-1} - h_{i-1} k_i) = (-1)^{i-1}b = 1$.

There is an alternative approach to generating solutions to (***)¹. If we know that $x^2 - ny^2 = N$ and $x_0^2 - ny_0^2 = 1$, then

$$(x^2 - ny^2)(x_0^2 - ny_0^2)^m = N = (x - \sqrt{ny})(x_0 - \sqrt{ny_0})^m(x + \sqrt{ny})(x_0 + \sqrt{ny_0})^m$$

But $(x^2 - ny^2)(x_0^2 - ny_0^2)^m = A - \sqrt{n}B$ for some A, B , and then $(x^2 + ny^2)(x_0^2 + ny_0^2)^m = A + \sqrt{n}B$ (because of the properties of *conjugates* of quadratic irrationals). Then

$$(A - \sqrt{n}B)(A + \sqrt{n}B) = A^2 - nB^2 = N.$$