
Math 445
Handy facts for the second exam

Don’t forget the handy facts from the first exam!

Quadratic Reciprocity.

Quadratic Residues: If x2 ≡ a (mod n) has a solution, a is a quadratic residue modulo
n . If it doesn’t, a is a quadratic non-residue modulo n . Euler’s Criterion gives us a test:
if p is a prime, then a is a quadratic residue mod n ⇔ a

p−1
2 ≡ 1 (mod p).

The Legendre symbol; for p an odd prime,(a

p

)
=




0 if p|a
1 if a is a quadratic residue mod p

−1 if a is a quadratic non-residue mod p

By Euler’s criterion,
(a

p

)
≡ a

p−1
2 (mod p) .

Basic facts:
(

−1
p

)
= (−1)

p−1
2 ,

(
ab
p

)
=

(
a
p

)(
b
p

)
, and

(
a+pk

p

)
=

(
a
p

)
.

Lemma of Gauss: Let p be an odd prime and (a, p) = 1. For 1 ≤ k ≤ p−1
2 let ak = ptk +ak

with 0 ≤ ak ≤ p − 1 . Let A = {k : ak > p
2} , and let n = |A| = the number of elements

in A . Then
(a

p

)
= (−1)n .

Theorem: Let p be an odd prime and (a, 2p) = 1 (i.e., (a, p) = 1 and a is odd). Let

t =
∑ p−1

2
j=1 �aj

p � . Then
(a

p

)
= (−1)t .

Along the way, this gives:
(

2
p

)
= (−1)n = (−1)

p2−1
8 . And putting it all together, we get

Gauss’ Law of Quadratic Reciprocity:

If p and q are distinct odd primes, then
(p

q

)(q

p

)
= (−1)(

p−1
2 )( q−1

2 ) .

The facts(
p
q

)(
q
p

)
= (−1)(

p−1
2 )( q−1

2 ) for distinct odd primes,
(

2
p

)
= (−1)

p2−1
8 , and

(
−1
p

)
= (−1)

p−1
2

allow us to carry out the calculations of Legendre symbols much more simply than Euler’s
criterion would.

For Q odd and (A, Q) = 1, if Q = q1 · · · qk is the prime factorization of Q, then the Jacobi
symbol

(
A
Q

)
is defined to be

(
A
Q

)
=

(
A
q1

)
· · ·

(
A
qk

)
.

Some basic properties:

If (A, Q) = 1 = (B, Q) then
(

AB
Q

)
=

(
A
Q

)(
B
Q

)

If (A, Q) = 1 = (A, Q′) then
(

A
QQ′

)
=

(
A
Q

)(
A
Q′

)

If (PP ′, QQ′) = 1 then
(

P ′P 2

Q′Q2

)
=

(
P ′
Q′

)
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Warning! If Q is not prime, then
(

A
Q

)
= 1 does not mean that x2 ≡ A (mod Q) has a

solution. Most of it’s properties are identical to the Legendre symbol:

If Q is odd, then
(

−1
Q

)
= (−1)

Q−1
2

If Q is odd, then
(

2
Q

)
= (−1)

Q2−1
8

If P and Q are both odd, and (P, Q) = 1, then
(

P
Q

)(
Q
P

)
= (−1)(

P−1
2 )( Q−1

2 )

Since the Jacobi symbol has essentially the same properties as the Legendre symbol, we
can compute them in essentially the same way; extract factors of 2 from the top (and −1),
and use reciprocity to compute the rest. The advantage: we don’t need to factor the top
any further, any odd number will work fine.

Interlude:
∑

p prime
1
p diverges.

We showed: the sum of the reciprocals of the primes ≤ N is ≥ ln(ln(N)) − 4 . In fact,

as n → ∞, (
∑

p prime,p≤n

1
p
) − ln(ln(n)) converges to a finite constant M , known as the

Meissel-Mertens constant. It’s value is, approximately, 0.26149721284764278... .

Continued Fractions.

If we look at each line of the calculation of g.c.d of a and b,
a = bq0 + r0, b = r0q1 + r1, . . . , rn−2 = rn−1qn + rn, rn = rn−1qn+1 + 0

they can we re-written as
a

b
= q0 +

r0

b
,

b

r0
= q1 +

r1

r0
, . . .

rn−2

rn−1
= qn +

rn

rn−1
,

rn

rn−1
= qn+1

When we put these together, we get a continued fraction expansion of a/b

(*)
a

b
= q0 +

1
q1 + 1

q2+
1

...+ 1
qn+1

which, for the sake of saving space, we will denote 〈q0, q1, . . . , qn+1〉. Note that, conversely,
given a collection q0, . . . , qn+1 of integers, we can construct a rational number, which we
denote 〈q0, q1, . . . , qn+1〉, by the formula (*).

Formally, we can try to do the same thing with any real number x; i.e, “compute” the
g.c.d. of x and 1 :
x = 1 · a0 + r0, 1 = r0a1 + r1, . . . , rn−2 = rn−1an + rn, where the ai’s are integers.
Unlike for the rational number a/b, if x is irrational, we shall see that this process does
not terminate, giving us an “infinite” continued fraction expansion of x, 〈a0, a1, a2 . . .〉 .
Our main goal is to figure out what this sequence of integers means!
First, a slightly different perspective:
x = a0+r0 with 0 ≤ r0 < 1 means a0 = �x� is the largest integer ≤ x; �blah� is the greatest
integer function. 1 = r0a1 + r1 with 0 ≤ r1 < r0 means 1/r0 = a1 +(r1/r0) = a1 +x1 with
0 ≤ x1 < 1, so q1 = �1/r0�. In general, the process of extracting the continued fraction
expansion of x looks like:
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(**) x = �x� + x0 = a0 + x0, 1/x0 = �1/x0� + x1 = a1 + x1, . . . ,
1/xn−1 = �1/xn−1� + xn = an + xn, . . .

If we stop this at any finite stage, then we can, just as in the case of a rational number
a/b, reassemble the pieces to give

x = 〈a0, a1, . . . , an−1, an + xn〉 = 〈a0, a1, . . . , an−1, an, 1/xn〉
If we ignore the last xn, we find that 〈a0, a1, . . . , an−1, an〉 is a rational number (proof:
induction on n), called the nth convergent of x. The integers an are called the nth partial
quotients of x. Note that since 0 ≤ x0 < 1, 1/x0 > 1, so a1 ≥ 1. This is true for all later
calculations, so ai ≥ 1 for all i ≥ 1. This sort of continued fraction expansion is what is
called simple. We will, in our studies, only deal with simple continued fractions.
For example, we can compute that, for x =

√
2, a0 = 1, x0 =

√
2 − 1, 1/x0 =

√
2 + 1,

a1 = 2, x1 =
√

2 − 1 = x0, so the pattern will repeat, and
√

2 has continued fraction
expansion 〈1, 2, 2, . . .〉. By computing some partial quotients, one can show that π has
expansion that begins 〈3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, . . .〉 . Euler showed that e
= 〈2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, . . .〉 .
By looking at the expression for a continued fraction, that we started with, it should be
apparent that

〈a0, a1, . . . , an−1, an〉 = 〈a0, a1, . . . , an−1 +
1
an

〉 = a0 +
1

〈a1, . . . , an−1, an〉
From this it follows, for example, that 〈a0, a1, . . . , an−1, an〉 = 〈a0, a1, . . . , an−1, an − 1, 1〉
. But these are the only such equalities:
Prop: If 〈a0, a1, . . . , an〉 = 〈b0, b1, . . . , bm〉 and an, bm > 1, then n = m and ai = bi for
all i = 0, . . . , n.

Computing 〈a0, a1, . . . , an〉 from 〈a0, a1, . . . , an−1〉:
〈a0, a1, . . . , an〉 =

hn

kn
, where h−2 = 0, k−2 = 0, h−1 = 1, k−1 = 0, and for i ≥ 0,

hi = aihi−1 + hi−2 and ki = aiki−1 + ki−2.
The proof is by induction. This, in turn implies:
For every i ≥ 0, hiki−1 − hi−1ki = (−1)i−1 (which implies that (hi, ki) = 1), and
hiki−2 − hi−2ki = (−1)iai .
Note: None of these formulas actually require that the ai’s be integers.

for x = 〈a0, a1, . . . , an−1, an + xn〉 = 〈a0, a1, . . . , an−1, an,
1
xn

〉, if we set

〈a0, a1, . . . , an−1, an〉 = rn,
then these formulas imply that

r2n < r2n+2 and r2n−1 > r2n+1 for every n, and r2n − r2n−1 =
1

k2n−1k2n

And since the numerator of
x − 〈a0, a1, . . . , an−1, an〉 = 〈a0, a1, . . . , an−1, an + xn〉 − 〈a0, a1, . . . , an−1, an〉,
we can compute, is xn(hn−1kn−2 − hn−2kn1) (and the denomenator is positive), we have
that r2n < x < r2n+1. So since r2n − r2n−1 → 0 as n → ∞, we find that rn → x, In
particular, |x − rn−1| < |rn−1 − rn| = 1/(kn−1kn) for every n. This implies that if the
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xn are never 0 (i.e., the continued fraction process is really an infinite one), then since
0 < |kn(x − rn)| = |knx − hn| < 1/kn−1, we find that x is not rational.
This last observation requires us to know that the kn are getting arbitrarily large. But note
that since ai ≥ 1 for every i > 0, k−1 = 0, k0 = 1, and ki = aiki−1 + ki−2 ≥ ki−1 + ki−2

for every i ≥ 1, we can see by induction that kn ≥ the nth Fibonacci number (which is
defined by Fi = Fi−1 + Fi−2), and the Fibonacci numbers grow very fast!
Based on these facts, we denote x = lim

n→∞〈a0, . . . , an〉 = 〈a0, a1, . . .〉 . Then

〈a0, a1, . . .〉 = a0 +
1

〈a1, a2, . . .〉
which in turn implies that:
If 〈a0, a1, . . .〉 = 〈b0, b1, . . .〉, then ai = bi for all i.

If 1 ≤ b < kn, then |x − a

b
| ≥ |x − hn

kn
| for all integers a; in fact if 1 ≤ b < kn+1, then

|bx − a| ≥ |knx − hn| for all integers a.

If x /∈ Q and a, b ∈ Z, with |x − a

b
| <

1
2b2

, then
a

b
=

hn

kn
for some n.

Repeating continued fraction expansions: A continued fraction 〈a0, a1, . . .〉 will repeat (i.e,
an = an+m for all n ≥ N) precisely when xn−1 = xn+m−1, since from (**) above, all of the
calculations of the partial quotients, starting from some fixed number, will depend only on
that fixed number. A real number x has a repeating continued fraction expansion if and
only if x is an (irrational) root of a quadratic equation, what we call a quadratic irrational.
In particular,
For any non-square positive integer n,

√
n + �√n� = 〈2a0, a1, . . . am〉 is purely periodic.

This implies that
√

n = 〈a0, a1, . . . am, 2a0〉

Pell’s Equation.

It turns out that the continued fraction expansion of
√

n can help us find the integer
solutions x, y of the equation

(***) x2 − ny2 = N

for fixed values of n and N . This equation is known as Pell’s equation.
First the less interesting cases. If n < 0, then any solution to N = x2 − ny2 ≥ x2 + y2

has |x|, |y| ≤ √
N , which can be found by inspection. If n = m2 for some m, then N =

x2 − m2y2 = (x − my)(x + my), so x − my, x + my both divide N , so, e.g., their sum, 2x
divides N2. We can then find all possible x, and so all solutions, by inspection. We now
focus on finding solutions for n ≥ 1 not a perfect square.

√
n is therefore irrational.

Then if 1 ≤ N ≤ √
n is not a perfect square, then N = x2 − ny2 implies that

|√n − x

y
| =

N

|x +
√

ny| · |y| <
N

2
√

ny2
<

1
2y2

, so
x

y
=

hm

km
for some m.

(The same, it turns out, is true for −√
n ≤ N ≤ −1.) But which m?√

n = 〈a0, a1, . . . am, 2a0〉 means that
√

n = 〈a0, a1, . . . am, a0 +
√

n〉. In general, at any
point where we stop computing the continued fraction of

√
n, we find that

√
n = 〈b0, b1, . . . bs,

√
n + a

b
〉, where

1
xs

=
√

n + a

b
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(so a and b take on only finitely many values, because xs does). But then we can compute
that
√

n =
(
√

n+a
b )hs + hs−1

(
√

n+a
b

)ks + ks−1

, which implies that h2
s − nk2

s = b(hsks−1 − hs−1ks) = (−1)s−1b .

In particular, solutions to x2 − ny2 = 1 exist, because b = 1 occurs as the denomenator of
xi for i = m+1, 2m+1, 3m+1, . . . . These are either all odd (if m is even), or every other
one is odd. For these values, i−1 is even, so h2

i −nk2
i = b(hiki−1−hi−1ki) = (−1)i−1b = 1

.
There is an alternative approach to generating solutions to (***). If we know that x2 −
ny2 = N and x2

0 − ny2
0 = 1, then

(x2 − ny2)(x2
0 − ny2

0)
m = N = (x −√

ny)(x0 −
√

ny0)m(x +
√

ny)(x0 +
√

ny0)m

But (x2 − ny2)(x2
0 −ny2

0)
m = A−√

nB for some A, B, and then (x2 + ny2)(x2
0 + ny2

0)
m =

A +
√

nB (because of the properties of conjugates of quadratic irrationals). Then
(A −√

nB)(A +
√

nB) = A2 − nB2 = N .
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