

Math 445 Homework 3

Due Wednesday, September 22

11. [NZM p.83, # 13] When applying the Pollard ρ method, starting from a_1 , suppose we find that a_1, \dots, a_{17} are all distinct, mod n , but then $a_{18} \equiv a_{11}$. What is the smallest k for which $a_{2k} \equiv a_k$?
12. [The RSA algorithm works even if $(A, n) > 1$.] Show that if $n = pq$ is a product of distinct primes and $de \equiv 1 \pmod{(p-1)(q-1)}$, then $A^{de} \equiv A \pmod{n}$.
(Hint: show that it works mod p and q , first.)
13. [NZM p. 86, # 5] Show that if $p^2|n$ for some $p \geq 2$, then there are $a \not\equiv b \pmod{n}$ for which $a^k \equiv b^k \pmod{n}$ for every $k \geq 2$.
14. Show that if $n|m$, and $(10, m) = 1$, then the period of the decimal expansion of $1/n$ divides the period of the decimal expansion of $1/m$.
15. Show that for every $n \geq 2$, $\text{ord}_{3^n}(10) = 3^{n-2}$.
(Hint: induction! Show first that $\text{ord}_{3^n}(10)|3^{n-2}$, and then that it can't be *smaller*.)
[Consequently, the period of $1/3^n$ is 3^{n-2} .]