

Math 445 Number Theory

September 5, 2008

Fermat's Little Theorem: If $(a, n) = 1$ and $a^{n-1} \not\equiv 1 \pmod{n}$, then n is not prime.

This is a very effective test, mostly because we can, in fact, effectively compute $a^{n-1} \pmod{n}$, by successive squaring. The idea: write $n - 1$ as a sum of powers of 2, by repeatedly subtracting the highest power of 2 less than what remains after doing prior subtractions. E.g.,

$$78 = 64 + 14, \quad 14 = 8 + 6, \quad 6 = 4 + 2, \quad \text{so } 78 = 2^6 + 2^3 + 2^2 + 2^1$$

Then we can compute $a^{78} = a^{2^6} \cdot a^{2^3} \cdot a^{2^2} \cdot a^{2^1} \pmod{79}$, by first computing each factor $\pmod{79}$, using $a^{2^k} = a^{2^{k-1} \cdot 2} = (a^{2^{k-1}})^2$ to proceed in stages. In this way we can compute $a^{n-1} \pmod{n}$, with under $2 \log_2(n)$ multiplications.

We can also quickly compute (a, n) , using the Euclidean algorithm. If $n = ax_1 + a_1$, then $(n, a) = (a, a_1)$, and by repeating this - if $a = a_1x_2 + a_2$ then $(a, a_1) = (a_2, a_1)$ - we eventually reach $(n, a) = \dots = (a_k, 0) = a_k$, giving us our answer. Typically, each application of the division algorithm reduces the scale of the problem by about half; in fact the slowest Euclidean algorithm can be shown to occur for consecutive numbers in the Fibonacci sequence 1,1,2,3,5,8,13,21,34,55,...., where the time for the Euclidean algorithm to finish is about $\log_c n$, where $c = (1 + \sqrt{5})/2$ is the Golden Ratio!

But pseudoprimes exist; Carmichael numbers exist. (There are, in fact, infinitely many of them.) We need a better test! Which we get from:

Fact (Euler): If p is prime and $a^2 \equiv 1 \pmod{p}$,

$$\text{then } a \equiv 1 \pmod{p} \text{ or } a \equiv -1 \pmod{p}.$$

Proof: $p|a^2 - 1 = (a - 1)(a + 1)$

This means that if we suspect that if n is prime, we can test more thoroughly; set $n - 1 = 2^k \cdot d$ with d odd (by repeatedly dividing $n - 1$ by 2 until what is left is odd). Then look, mod n at

$$a^d, a^{2d}, a^{2^2d}, \dots, a^{2^kd} = a^{n-1}$$

If n is prime, the last number is 1, and, by Euler, the number *just before* we first start seeing 1's must be -1 . If if *don't* see this pattern, then n cannot be prime.

This is the basis for our next test, the Miller-Rabin test.