
Math 445 Number Theory

September 15 and 17, 2008

If Miller-Rabin tells us that a number N is composite, how do we find
its factors? The most straightforward approach; test divide all numbers less
than

√
N , or better, all primes less than

√
N ; eventually you will find a factor.

But this requires on the order of
√

N steps, which is far too large.

A different method uses the fact that if N = ab and a1, . . . an are chosen at
random, a is more likely to divide one of the ai (or rather (for later efficiency),
one of the differences ai−aj), than N is. This can be tested for by computing
gcd’s, d = (ai − aj ,N); this number is 1 < d < N if a (or some other factor)
divides ai − aj but N does not, and finds us a proper factor, d, of N . The
probability that a divides none of the differences is approximately 1− 1/a for
each difference, and so is approximately

(1− 1

a
)(

n

2) = ((1− 1

a
)a)

n(n−1)
2a ≈ ((1− 1

a
)a)

n
2

2a ≈ ((1− 1

a
)a)

n
2

2a ≈ (e−1)
n
2

2a = e
−n

2

2a

which is small when n2 ≈ a ≤
√

N , i.e., n ≈ N1/4. The problem with this
method, however, is that it requires n(n − 1)/2 ≈

√
N calculations, and so is

no better than trial division! We will rectify this by choosing the ai pseudo-

randomly (which will also explain the use of differences). This will lead us to
the Pollard ρ method for factoring.

The idea: choose a relatively simple to compute function, like f(x) =
x2 + c. Starting from some number a1, we generate a sequence by repeatedly
applying f to a1 ;

a2 = f(a1), a3 = f(a2) = f2(a1), . . . , ak = f(ak−1) = fk−1(a1), . . .

The point is that if ever we have a|ai − aj , then since

ai+1 − aj+1 = (a2
i + c) − (a2

j + c) = a2
i − a2

j = (ai − aj)(ai + aj)

we have a|ai+1 − aj+1, as well. So (by induction!) a|ai+k − aj+k for all k ≥ 0
. So we can test for occurances of 1 < (ai − aj ,N) < N by testing only a
relatively few pairs; we get the effect of testing many more of them for free.

The idea is to test (a2i − ai,N) for each i. The calculation above says
that if 1 < (ai − aj ,N) for (WOLOG) i > j, then the same is true for every
pair (i + k, j + k)with k ≥ 1, i.e., for the pairs along the ray of slope 1 in the
“i,j-plane”. The pairs (2i, i) lie on the ray of slope 2 from the origin (0,0),
and for a large fraction of pairs (i, j) (half? one-fourth?) the ray of slope 1

from (i, j) will meet the ray of slope 2 from (0, 0), and so a point on the slope
2 ray will have 1 < (a2i − ai,N), and give us a chance of finding a (proper)
factor. In essence, by testing k pairs (2i, i) we are testing a (fixed) fraction of
k2 pairs (i, j), and so we can effectively test

√
N pairs (i, j) (and have a good

chance of finding a factor) by testing N1/4 pairs (2i, i). Turning this into an
algorithm:

Given N composite, choose a function f(x) = x2 + c and a starting
point a1; set b1 = f(a1) and then build the sequences ai = f(ai−1) and
bi = f2(bi−1). Compute (bi − ai,N) and

if for some i, 1 < (bi − ai,N) < N , stop: we have found a factor.

if (bi − ai,N) = N or i gets too large, reset the parameters: use a new a1 or
a new c.

We expect in the generic case for this process to find a factor by the time
i gets in the range of N1/4 (or rather, the square root of the smallest prime
factor of N), but this is not guaranteed.

