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One tool that we need to add to our toolbox is the existence of primitive roots of 1 mod
a prime p: that is, the existence of integers a for which ord,(a) = p—1 . In the language
of groups, this says that the group of units in Z, is cyclic, when p is prime. In order to
prove this, we need a bit of machinery:

Lagrange’s Theorem: If f(x) is a polynomial with integer coefficients, of degree n, and
p is prime, then the equation f(z) = 0 (mod p) has at most n mutually incongruent
solutions, unless f(x) =0 (mod p) for all .

To see this, do what you would do if you were proving this for real or complex roots;
given a solution a, write f(x) = (z — a)g(x) + r with r=constant (where we understand
this equation to have coefficients in Z,) using polynomial long division. This makes sense
because Z, is a field, so division by non-zero elements works fine. Then 0 = f(a) =
(a—a)g(a)+r =r means r =01in Z,, so f(z) = (x —a)g(x) with ¢g(z) a polynomial with
degree n — 1 . Structuring this as an induction argument, we can assume that g(x) has at
most n — 1 roots, so f has at most (a and the roots of g, so) n roots, because, since p is
prime, if f(b) = (b—a)g(b) =0 (mod p), then either b —a =0 (so a and b are congruent
mod p), or g(b) =0, so b is among the roots of g.

This in turn leads us to
Corollary: If p is prime and d|p — 1 , then the equation 29 —1=0 (mod p) has ezactly d

solutions mod p.

This is because, writing p—1 = ds, f(z) = 2P~ —1 = 0 has exactly p—1 solutions (namely,
1 through p — 1), and 2P~ ! = (29 — 1) (271 4 29572 ... 4 24 4+ 1) = (¢ — 1)g(x) .
But g(x) has at most d(s — 1) = (p — 1) — d roots, and z% — 1 has at most d roots, and
together (since p is prime) they make up the p— 1 roots of f. So in order to have enough,
they both must have exactly that many roots.

We introduce the notation p¥||N, which means that p¥|N but p*+! N .
kg
n—1. Then the equation (*) zP:" =

1 (mod n) has p¥ solutions, while (1) 2 =1 (mod n) has only p*~' < pl solutions;
pick a solution, a; to (*) which is not a solution to (1) . [In particular, ord,(a;) = pF.]

For each prime p; dividingn—1,1 <1 < s, we let pf

n—1 n—1

Then set a = a; ---as . Then a computation yields that, mod n, a »i =a,” # 1, since
n—1 n—1
otherwise ord,,(a;)|——, and so ord,, (a;)| ged(p¥, !
i i

) = pf~! | a contradiction. So

pFi|lord,(a) for every i, so n — 1|ord, (a), so ord,(a) =n — 1.

This result is fine for theoretical purposes (and we will use it many times), but it is
somewhat less than satisfactory for computational purposes; this process of finding such
an a would be very laborious.



