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One tool that we need to add to our toolbox is the existence of primitive roots of 1 mod

a prime p: that is, the existence of integers a for which ordp(a) = p− 1 . In the language
of groups, this says that the group of units in Zp is cyclic, when p is prime. In order to
prove this, we need a bit of machinery:

Lagrange’s Theorem: If f(x) is a polynomial with integer coefficients, of degree n, and
p is prime, then the equation f(x) ≡ 0 (mod p) has at most n mutually incongruent
solutions, unless f(x) ≡ 0 (mod p) for all x.

To see this, do what you would do if you were proving this for real or complex roots;
given a solution a, write f(x) = (x − a)g(x) + r with r=constant (where we understand
this equation to have coefficients in Zp) using polynomial long division. This makes sense
because Zp is a field, so division by non-zero elements works fine. Then 0 = f(a) =
(a−a)g(a)+ r = r means r = 0 in Zp, so f(x) = (x−a)g(x) with g(x) a polynomial with
degree n−1 . Structuring this as an induction argument, we can assume that g(x) has at
most n − 1 roots, so f has at most (a and the roots of g, so) n roots, because, since p is

prime, if f(b) = (b− a)g(b) ≡ 0 (mod p), then either b− a ≡ 0 (so a and b are congruent
mod p), or g(b) = 0, so b is among the roots of g.

This in turn leads us to

Corollary: If p is prime and d|p− 1 , then the equation xd − 1 ≡ 0 (mod p) has exactly d

solutions mod p.

This is because, writing p−1 = ds, f(x) = xp−1−1 ≡ 0 has exactly p−1 solutions (namely,
1 through p − 1), and xp−1 = (xd − 1)(xd(s−1) + xd(s−2) + · · · + xd + 1) = (xd − 1)g(x) .
But g(x) has at most d(s − 1) = (p − 1) − d roots, and xd − 1 has at most d roots, and
together (since p is prime) they make up the p−1 roots of f . So in order to have enough,
they both must have exactly that many roots.

We introduce the notation pk||N , which means that pk|N but pk+1 6 |N .

For each prime pi dividing n−1, 1 ≤ i ≤ s, we let pki

i ||n−1 . Then the equation (*) xp
ki
i ≡

1 (mod n) has pki

i solutions, while (†) xp
ki−1

i ≡ 1 (mod n) has only pki−1
i < pki

i solutions;

pick a solution, ai to (*) which is not a solution to (†) . [In particular, ordn(ai) = pki

i .]

Then set a = a1 · · · as . Then a computation yields that, mod n, a
n−1

pi ≡ a
n−1

pi

i 6≡ 1, since

otherwise ordn(ai)|
n − 1

pi

, and so ordn(ai)| gcd(pki

i ,
n − 1

pi

) = pki−1
i , a contradiction. So

pki

i ||ordn(a) for every i, so n − 1|ordn(a), so ordn(a) = n − 1.

This result is fine for theoretical purposes (and we will use it many times), but it is
somewhat less than satisfactory for computational purposes; this process of finding such
an a would be very laborious.


