

Math 445 Number Theory

September 22-24, 2008

One tool that we need to add to our toolbox is the existence of *primitive roots of 1 mod a prime p*: that is, the existence of integers a for which $\text{ord}_p(a) = p - 1$. In the language of groups, this says that the group of units in \mathbb{Z}_p is cyclic, when p is prime. In order to prove this, we need a bit of machinery:

Lagrange's Theorem: If $f(x)$ is a polynomial with integer coefficients, of degree n , and p is prime, then the equation $f(x) \equiv 0 \pmod{p}$ has at most n mutually incongruent solutions, unless $f(x) \equiv 0 \pmod{p}$ for all x .

To see this, do what you would do if you were proving this for real or complex roots; given a solution a , write $f(x) = (x - a)g(x) + r$ with $r = \text{constant}$ (where we understand this equation to have coefficients in \mathbb{Z}_p) using polynomial long division. This makes sense because \mathbb{Z}_p is a *field*, so division by non-zero elements works fine. Then $0 = f(a) = (a - a)g(a) + r = r$ means $r = 0$ in \mathbb{Z}_p , so $f(x) = (x - a)g(x)$ with $g(x)$ a polynomial with degree $n - 1$. Structuring this as an induction argument, we can assume that $g(x)$ has at most $n - 1$ roots, so f has at most (a and the roots of g , so) n roots, because, *since p is prime*, if $f(b) = (b - a)g(b) \equiv 0 \pmod{p}$, then either $b - a \equiv 0$ (so a and b are congruent mod p), or $g(b) = 0$, so b is among the roots of g .

This in turn leads us to

Corollary: If p is prime and $d|p - 1$, then the equation $x^d - 1 \equiv 0 \pmod{p}$ has *exactly* d solutions mod p .

This is because, writing $p - 1 = ds$, $f(x) = x^{p-1} - 1 \equiv 0$ has exactly $p - 1$ solutions (namely, 1 through $p - 1$), and $x^{p-1} = (x^d - 1)(x^{d(s-1)} + x^{d(s-2)} + \dots + x^d + 1) = (x^d - 1)g(x)$. But $g(x)$ has *at most* $d(s - 1) = (p - 1) - d$ roots, and $x^d - 1$ has at most d roots, and together (since p is prime) they make up the $p - 1$ roots of f . So in order to have enough, they both must have *exactly* that many roots.

We introduce the notation $p^k||N$, which means that $p^k|N$ but $p^{k+1} \nmid N$.

For each prime p_i dividing $n - 1$, $1 \leq i \leq s$, we let $p_i^{k_i}||n - 1$. Then the equation $(*)$ $x^{p_i^{k_i}} \equiv 1 \pmod{n}$ has $p_i^{k_i}$ solutions, while (\dagger) $x^{p_i^{k_i-1}} \equiv 1 \pmod{n}$ has only $p_i^{k_i-1} < p_i^{k_i}$ solutions; pick a solution, a_i to $(*)$ which is not a solution to (\dagger) . [In particular, $\text{ord}_n(a_i) = p_i^{k_i}$.] Then set $a = a_1 \cdots a_s$. Then a computation yields that, mod n , $a^{\frac{n-1}{p_i}} \equiv a_i^{\frac{n-1}{p_i}} \not\equiv 1$, since otherwise $\text{ord}_n(a_i)|\frac{n-1}{p_i}$, and so $\text{ord}_n(a_i)|\text{gcd}(p_i^{k_i}, \frac{n-1}{p_i}) = p_i^{k_i-1}$, a contradiction. So $p_i^{k_i}||\text{ord}_n(a)$ for every i , so $n - 1|\text{ord}_n(a)$, so $\text{ord}_n(a) = n - 1$.

This result is fine for theoretical purposes (and we will use it many times), but it is somewhat less than satisfactory for computational purposes; this process of *finding* such an a would be very laborious.