
ar
X

iv
:p

hy
si

cs
/0

50
31

59
v2

  [
ph

ys
ic

s.
ge

n-
ph

] 
 1

4 
A

pr
 2

00
5

hep-th/0503159

Fast Factoring of Integers

Gordon Chalmers

e-mail: gordon@quartz.shango.com

Abstract

An algorithm is given to factor an integer with N digits in lnm N steps, with m

approximately 4 or 5. Textbook quadratic sieve methods are exponentially slower.

An improvement with the aid of an a particular function would provide a further

exponential speedup.
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Factorization of large integers is important to many areas of pure mathematics

and has practical applications in applied math including cryptography. This subject

has been under intense study for many years [1]; improvements in the methodology

are especially desired for computational reasons.

Given an integer N composed of approximately ln10 N digits, standard text-

book quadratic sieve methods generate the factorization of the number into primes

in roughly

ea
√

lnN ln lnN (1)

moves. The steps require manipulations of large integers, of the size N , with bit

complexity of approximate ln N . The number a is approximately 2, depending on the

variant used [1].

The presentation in this work generates a computational method to obtain the

prime factorization in

lnm N (2)

moves with integers of the same size. The factor m is specified by the convergence of

the solution to a set of polynomial equations in lnN variables, which numerically is

approximately m = 3, after the root selection is chosen from small numbers to large

(see, e.g. [2]).

Given a function CN that counts the number of prime factors of a number, i.e.

N =
r∏

j=1

p
kj

σ(j) CN =
r∑

i=1

kj , (3)

the factorization of the number N could be performed in approximately Cm
N steps.

The bound on the number of prime factors of an integer N is set by ln2 N , the product

of the smallest prime number 2. The number of primes smaller than a number N is

approximately N/ lnN , and the CN is roughly ln ln N . Hence, given the function CN

a further exponential improvement is generically given. However, this function would

drastically simplify the factorization of large numbers possessing only a few prime

factors. The upper bound of CN ∼ ln N describes the case discussed in the previous

paragraph.
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Consider a number with exactly CN factors. This number projects in base x onto

the form,

N =
CN∑

i=0

aix
i . (4)

The polynomial form in (4) admits a product form,

N =
CN∏

i=1

(cjx − bj) , (5)

with cjx − bj integral. The number scales into the form,

N = γ
CN∏

i=1

(αjx − 1) , (6)

in which there are CN numbers αj and a number γ. The same integer has the prime

factorization

N =
CN∏

i=1

pσ(i) , (7)

with the set σ(j) containing possible redundancy, for example, pσ(1) = pσ(2) = 2.

Given an integer base x the solution to the numbers bj generate the prime factors, as

long as the value CN is correct.

Two examples are given. First, 15 = 32 + 2(3) = x(x + 2), which solves for

the prime factors 3 and 5. Second, 10 = 23 + 2 = x(x2 + 1), which solves for the

prime factors 2 and 5. In the second example, even though there are two factors, the

polynomial is a cubic with a vanishing zeroth order term; the origin of the cubic is

that there is a complex root.

The polynomial base form of the number, i.e. N =
∑

aix
i, will not in all cases

factor into the form (5) with real coeffcients cj and bj . However, because the coeffi-

cients are real, the roots will enter in complex conjugate pairs. The product of these

complex conjugates form a positive number. In order to test all possible cases, in-

cluding the presence of a factor being represented as a product of two complex roots,

all numbers from CN to 2CN should be examined. Potential complex roots come in
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pairs, and the maximum number of factors could take on the form of CN products of

two complex numbers. The cost of the additional complexity is of order unity.

The expansion of (5) generates a set of algebraic equations relating the integer

coefficients bj to those in aj. The form is,

γα1α2 . . . αCN
= aCN

. . .

γ = a0 , (8)

in which the combinations

cjx − bj (9)

must converge to integers or into pairs with the product being an integer, and for

the maximal factorization to prime numbers p (of which there are an approximate

N/ ln N of them for the number N). The determination of the numbers αj must

be rational as (cj/bjx − 1) = n/bj , with n integral. The other case of interest is

when cj/bj is complex and the relevant condition is |(cj/bjx − 1)|2 = n2/b2
j ; this is

not satisified in general by complex rational numbers. However, one may square the

number N and then all terms in the product must be rational.

The number γ must be an integer or the square of γ must be an integer, ac-

cording to the presence of complex terms (roots) which square to an integer. If the

solution does not satisfy these criteria, then there is not a valid factorization N into

integers. Given rational solutions αj = cj/bj and the γ =
∏

bj , the straightforward

multiplication of γ into the CN factors generates the factorization into N1N2 . . . NCN
,

via eliminating the denominators in the individual terms of the rational numbers.

The complex root case allows the numbers to be determined as Nj = Nj,+Nj,−.

Solving these equations generates the prime factorization of the integer N into

the set of primes pσ(j). Numerically, solving a set of equations in n variables typically

has convergence of n3 if the initial starting values are chosen correctly.

In the case of CN not known, but bounded by ln N , all cases of interest from

the test cases of C̃N = 1 to C̃N = ln N may be examined, at the cost of duplicating

the process by the bound ln N . Typical true values of CN are expected for generic

numbers to be smaller than the bound, e.g. ln ln N . The cases from CN to 2CN must

also be examined in order to take into account the pairs of complex conjugates.

Computationally exploring all of the cases from C̃N = 1 to C̃N = 2 ln N (e.g.

∼ CN) for integer bases x finds all product forms of the integer N into products
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N = N1N2 N = N1N2N3 (10)

N = N1N2 . . . NCN
=

CN∏

j=1

pσ(j) . (11)

Solving for bj and cj (e.g. αj = bj/cj) in terms of aj generates either integral values

or non-integral values, or pairs or complex conjugates. In the case of integral values

for all the bj parameters, the base x is resubstituted into the factors cjx − bj of the

total product,

N =
C̃N∏

(cjx − bj) = γ
∏

(αjx − 1) , (12)

to find the values of the individual Nn. The integral solutions generate the various

factorizations. In the case of complex conjugate pairs, the integrality is tested by

multiplying the individual terms,

(cjx − bj)(c
∗
jx − b∗j ) ∼ (αjx − 1)(α∗

jx − 1) , (13)

and determining if it is an integral (the latter has to be rational). The maximum C̃N

that results in integral values of cjx − bj gives the prime factorization. Non-integral

solutions to cjx − bj do not generate integer factorization of the number N into C̃N

numbers.

In the computation for the roots, the parameters αj and γ are determined. The

integrality of the cjx − bj translates into αj being a rational number (when not a

complex root allowing the complex cjx− bj square to be an integer). The rationality

allows the denominators of all the αj parameters to be extracted and used to multiply

the prefactor γ. The case of the complex roots may be examined also by first taking

the complex square and examining for integrality; the denominators must also be

taken out of the products.

Computationally testing all cases from C̃N = 1 to ln N finds all product forms

of the potentially large integer N . The factorization process entails three steps: 1)

projecting the number N into base x, 2) solving the system of algebraic equations

for integral cjx − bj , 3) substituting the base x back into the cjx − bj for factor

determination.

4



Computationally the first step requires specifying the base x and projecting the

number onto it. The base x is specified by the two equations,

lnx >
ln N

C̃N + 1
ln x ≤ ln N

C̃N

. (14)

Following the determination of x, the coefficients aj are determined via starting with

aC̃N
≤ x, j = C̃N , NC̃N

= N and following the procedure,

Nj−1 = Nj − ajx
j (15)

with

γj−1 = Nj−1/x
j−1 . (16)

Take aj−1 = [γj−1] with a rounding down of γj−1; if aj−1 ≥ x then the procedure stops

and the remaining ai are set to ai = 0 with i < j − 1. Otherwise, the subtraction

process continues. The procedure costs at most 3C̃N operations with numbers of at

most size N (bit size ln N). Due to the bound on C̃N , this process is at most of the

size 3 lnN operations, one of which is division.

The next step requires the solution of the algebraic equations for bj in terms of aj .

There are C̃N +1 equations in C̃N +1 variables. The initial roots are chosen from the

lowest prime neighborhood around p = cjx − bj , to larger. This procedure is natural

for the root determinations in the case of the exact CN . Another case is in choosing

cascades in the range 10n to 10n+1 for n ≤ ln10 N . Convergence is not analyzed, but

for well chosen starting values, the number of iterations is typically N3
v ; this is C̃3

N for

the case of C̃N variables and equations. The bound is ln3 N . Roughly, if the number

of operations per iteration is C̃2
N (i.e. evaluating a set of similar polynomials) and

there are C̃N roots, then the steps would number as C̃6
N .

If any roots converge to a non-integral value of bj , then the integer N does not fac-

tor into C̃N numbers. This shortens the number of iterations and steps. The process

of determining the factorization of N into the products of two to CN numbers re-

quires lnm N steps, with m denoting an average value from the root selection process,

the number of variables at each step, the root solving and iteration process including

shortcuts such as information from lower C̃N examples, and an averaging of the short-

ening the algorithm during the process of lower unknown roots or non-integerness.

Perhaps, the average results in m ∼ 4 or 5, less than ln6 N .
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To compare with the textbook quadratic sieve method, take the logarithm of the

steps for both this method and the former,

a
√

ln N ln ln N m ln ln N (17)

which is,

a2 ln N ln ln N m2 ln2 ln N . (18)

The gain is clearly an exponential. The terms compare as a2 ln N = m2 ln ln N ′ and

N ′ = exp exp(a2/m2N). Consider N = 101000: the numbers are an approximate

exp (a212000)1/2 vs. exp (m6)1/2.

In addition to prime factorization, the product form of the integer into various

products of factors is determined; this is an additional byproduct of the procedure

and its computational cost. Furthermore, an explicit knowlege of CN , the number of

prime factors of a number, would provide a further exponential speedup.

The procedure here may be adapted to find various forms of number decomposi-

tions. An example is to find the form of a number written as a sum of products of

primes.
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