
Math 445 Number Theory

Topics for the first exam

An integer p is prime if whenever p = ab with a, b ∈ Z, either a = ±p or b = ±p .
[For sanity’s sake, we will take the position that primes should also be ≥ 2 .]

Primality Tests.

How do you decide if a number n is prime?

Brute force: try to divide every number (better: prime) ≤ n (better ≤ √
n) into n, to locate

a factor.

Fermat’s Little Theorem. If p is prime and (a, p) = 1, then ap−1 ≡ 1(mod p) .

A composite number n for which an−1 ≡ 1(mod n) is called a pseudoprime to the base a. A
composite number which is a pseudoprime to every base a satisfying (a, n) = 1 is called a
Carmichael number.

φ(n) = number of integers a between 1 and n with (a, n) = 1; if n = pα1

1 · · · pαk

k is the prime

factorization of n, then φ(n) = pα1−1
1 (p1 − 1) · · ·pαk−1

k (pk − 1)

Euler’s Theorem.If (a, n) = 1, then aφ(n)(mod n) .

Fermat ⇒ if (a, n) = 1 and an−1 6≡ 1(mod n) then n is not prime.

If p is prime and a2 ≡ 1(mod p), then a ≡ ±1(mod p)

(Miller-Rabin Test.) Given n, set n− 1 = 2kd with d odd. Then if n is prime and (a, n) = 1,

either ad ≡ 1(mod n) or a2id ≡ −1(modn) for some i < k.

If n is not prime, but the above still holds for some a, then n is called a strong pseudoprime

to the base a.

Compositeness test: If ad 6≡ ±1(mod n), compute a2id(modn) for i = 1, 2, . . . . If this
sequence hits 1 before hitting −1, or is not 1 for i = k, then n is not prime.

Fact: If n is composite, then it is a strong pseudoprime for at most 1/4 th of the a’s between
1 and n.

Finding Factors.

(Pollard Rho Test.) Idea: if p is a factor of N , then for any two randomly chosen numbers
a abd b, p is more likely to divide b − a than N is.

Procedure: given N , use Miller-Rabin to make sure it is composite! Then pick a fairly
random starting value a1 = a, and a fairly random polynomial with integer coefficients
f(x) (such as f(x) = x2 + b), then compute a2 = f(a1), . . . , an = f(an−1), . . . . Finally,
compute (a2n − an, N) for each n. If this is > 1 and < N , stop: you have found a proper
factor of N . If it gives you N , stop: the test has failed. You should restart with a different
a and/or f .

Basic idea: this will typically find a factor on a timescale on the order of
√

p ≤ N1/4, where
p is the smallest (but unknown!) prime factor of N .
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RSA cryptosystem:

To send and receive messages securely: start by choosing two large primes p, q , set n = pq,
and choose an e relatively prime to (p − 1)(q − 1) . Publish n and e. Privately compute
d with de − x(p − 1)(q − 1) = 1 . To send you a message, we convert the message to a
number A (cutting it into blocks shorter than n if necessary), compute B = Ae (mod n)
and send B. You then compute (because of Euler’s Theorem!) A = Bd (mod n) .

The security of the system rests on the fact that, to the best of our current knowledge, the
fastest way to recover A from B is to determine d (in order to do your calculations), which
seems to require knowing (p− 1)(q − 1), which amounts to knowing p and q, which means
factoring n, which is hard!

Periods of repeating fractions.

For integers n with (10, n) = 1, the fractions a/n have a repeating decimal expansion. E.g,
2/3 = .6666 . . . , 1/7 = .142857142857 . . . , etc.

Determining the length of the period (repeating part) can be done via FLT: 1/7 = .142857142857 . . .
means 1/7 = 142857/106 + 142857/1012 + . . . = 142857/(106 − 1), i.e 7|106 − 1, and 6 is
the smallest power for which this is true.

In general (if (a, n) = 1), we define ordn(a) = k = the smallest positive number with
ak ≡ 1(mod n). Equivalently, it is the largest number satisfying ar ≡ 1(mod n) ⇒
ordn(a)|r . (Therefore, ordn(a)|φ(n), by Euler’s Theorem.)

Generally, then, the period of 1/n = ordn(10), when (10, n) = 1. When (10, n) > 1, we can
write n = 2r5sb = ab with (10, b) = 1, and then write

1

n
=

1

ab
=

A

a
+

B

b
for some integers A, B .

A/a will have a terminating decimal expansion, so 1/n will have some garbage at the begin-
ning , and then repeat with period equal to the period of b.

Gauss conjectured that there are infinitely many primes p whose period is p − 1; this is still
unproved.

Primitive roots.

A number a is called a primitive root of 1 mod n if ordn(a) = φ(n) (the largest it could be).

If n is prime, then there is a primitive root of 1 mod n.

The proof uses the important

(Lagrange’s Theorem.) If p is a prime, and f(x) = anxn + · · ·a1x + a0 is a polynomial with
integer coefficients, an 6≡ 0(mod p), then the equation

f(x) ≡ 0(mod p)
has at most n solutions.

This implies that if p is prime and d|p − 1, then the equation xd ≡ 1(mod p) has exactly d
solutions.

Finding a primitive root mod p a prime: for each prime pi|p − 1, find ai with a
(p−1)/pi

i 6≡ 1
(mod p), then set a = the product of the ai.

Lemma: If ordn(a) = m, then ordn(ak) = m/(m, k)

Corollary: If p is prime, then there are exactly φ(p− 1) (incongruent mod p) primitive roots
of 1 mod p: find one, a, then the rest are ak for 1 ≤ k ≤ p and (k, p − 1) = 1.
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A faster factoring algorithm: the quadratic sieve.

Originates with Fermat: for n odd, if composite then n = a2 − b2 = (a + b)(a − b) for some
a, b. Finding such a factorization is slower than trial division!

Improvement: find ai close to
√

n so that a2
i − n = bi have product a square: b1 · · · bk = x2,

so n|(a1 · · ·ak)2 − x2, and (n, a1 · · ·ak + x) or (n, a1 · · ·ak − x) might produce a proper
factor.

Finding the ai: choose a bound B and search for bi whose prime factors are all ≤ B (B-
smooth numbers). If there are m primes ≤ B, then with m + 1 such bi some product of
them must be a square. The right collection can be found by linear algebra: create vectors
listing the exponents of the primes in the factorization of bi, mod 2, and find a collection
which sum to the 0-vector, mod 2.

Finding the bi; start with a = b√nc + 1 and (a + i)2 − n = bi; for a prime p ≤ B, p|bi if
(a+ i)2 ≡ n (mod p); this is true either never (if x2 ≡ n has no solutions) or for two values
n1, n2 mod p (see below!). Only a + i = nk + jp can yield a bi that is a multiple of p;
finding such bi that are divisble by many p yields B-smooth numbers.

Pythagorian triples:

If a2+b2 = c2, then we call (a, b, c) a Pythagorean triple. If (a, b) = 1 then ((a, c) = (b, c) = 1
and) we call the triple primitive. For a primitive triple, c must be odd, a (say) even and b
odd. Then because

Proposition: If (x, y) = 1 and xy = c2, then x = u2, y = v2 for some integers u, v .
we can write a = 2uv , b = u2 −v2 , and c = u2 +v2 for some integers u, v ; these formulas
describe all primitive Pythagorean triples.

Sums of squares.

If n = a2 + b2, then n ≡ 0, 1, or 2(mod 4). Since the product of the sum of two squares
(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2 = (ad + bc)2 + (ac − bd)2

is the sum of two squares, and

2n = (a2 + b2) ⇒ n = (
a − b

2
)2 + (

a + b

2
)2 and m = (a2 + b2) ⇒ 2m = (a − b)2 + (a + b)2

it suffices to focus on odd numbers, and (more or less) odd primes.

If p ≡ 1(mod 4) is prime, then p is the sum of two squares.

If p ≡ 3(mod 4) is prime and p|a2 + b2, then p|a and p|b.
Together, these imply that a positive integer n can be expressed as the sum of two squares

⇔ in the prime factorization of n, every prime congruent to 3 mod 4 appears with even
(possibly 0) exponent.

nth roots modulo a prime:

If p is prime and (a, p) = 1, then (setting r = (n, p − 1) the equation xn ≡ a(mod p) has

r solutions if a(p−1)/r ≡ 1(mod p)
no solution if a(p−1)/r 6≡ 1(mod p)

(Euler’s Criterion.) The equation x2 ≡ a(mod p) has a solution (p = odd prime) ⇔ a(p−1)/2 ≡
1(mod p) ; it then has two solutions (x and −x).

The equation x2 ≡ −1(mod p) has a solution ⇔ (−1)(p−1)/2 ≡ 1(mod p) ⇔ p = 2 or
p ≡ 1(mod 4)
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Solving x2 ≡ a (mod p): the algorithm RESSOL.

If it has a solution, then a
p−1

2 ≡ 1 (mod p) . Let p− 1 = 2km with m odd, and set r ≡ a
m+1

2

(mod p), and n ≡ am. Then r2 ≡ am+1 = a · n, and n2k−1 ≡ a
p−1

2 ≡ 1, so ordp(n) = 2k1

for some k1 < k. The goal: by altering r, whittle n down to 1.

We also need a quadratic non-residue, i.e., a b with b
p−1

2 ≡ −1 (mod p). (Find one by

computing b
p−1

2 for random b; half of all guesses will be non-residues.) Then setting

c = bm, ordp(c) = 2k, so ordp(c
2k−k1

) = 2k1 . Then we use:

If ordp(x) = ordp(y) = 2r, then ordp(xy) = 2s with s < r.

Then setting r1 = c2k−k1−1

, (rr1)
2 ≡ a(c2k−k1

n) = an1, with ordp(n1) = 2k2 for k2 < k1.
Now do it again! Continuing this process will yield x = rr1 · · · rk with (rr1 · · · rk)2 ≡ ank

and ordp(nk) = 20 = 1, i.e., nk = 1, giving x2 ≡ a.

Note that we need to know the precise order of ni at each step (which power of 2), which
can be found by repeated squaring.
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