Math 445 Handy facts for the second exam

Don't forget the handy facts from the first exam!

Quadratic Reciprocity.

Quadratic Residues: If $x^2 \equiv a \pmod{n}$ has a solution, a is a quadratic residue modulo n. If it doesn't, a is a quadratic non-residue modulo n. Euler's Criterion gives us a test: if p is a prime, then a is a quadratic residue mod $n \Leftrightarrow a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$. The *Legendre symbol*; for p an odd prime,

 $\frac{a}{a}$ p $=$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ 0 if $p|a$ 1 if a is a quadratic residue mod p -1 if a is a quadratic non-residue mod p

By Euler's criterion, $\left(\frac{a}{c}\right)$ p $= a^{\frac{p-1}{2}} \pmod{p}.$

Basic facts: $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}, \left(\frac{ab}{p}\right)$ $\left(\frac{ab}{p}\right)=\left(\frac{a}{p}\right)$ $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$, and $\left(\frac{a+pk}{p}\right)$ $\left(\frac{p}{p}\right) = \left(\frac{a}{p}\right)$ $\frac{a}{p}$.

Lemma of Gauss: Let p be an odd prime and $(a, p) = 1$. For $1 \le k \le \frac{p-1}{2}$ let $ak = pt_k + a_k$ with $0 \le a_k \le p-1$. Let $A = \{k : a_k > \frac{p}{2}\}$ $\binom{p}{2}$, and let $n = |A|$ = the number of elements in A . Then $\left(\frac{a}{a}\right)$ p $= (-1)^n$.

Theorem: Let p be an odd prime and $(a, 2p) = 1$ (i.e., $(a, p) = 1$ and a is odd). Let $t = \sum_{j=1}^{\frac{p-1}{2}} \lfloor \frac{aj}{p} \rfloor$ $\frac{a_j}{p}$]. Then $\left(\frac{a}{p}\right)$ $= (-1)^t$.

Along the way, this gives: $\left(\frac{2}{n}\right)$ $\binom{2}{p} = (-1)^n = (-1)^{\frac{p^2-1}{8}}$. And putting it all together, we get Gauss' Law of Quadratic Reciprocity:

If p and q are distinct odd primes, then
$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)}
$$
.

The facts

 $\left(p\right)$ $\binom{p}{q}\left(\frac{q}{p}\right) = (-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)}$ for distinct odd primes, $\left(\frac{2}{p}\right)$ $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}, \text{ and } \left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$ allow us to carry out the calculations of Legendre symbols much more simply than Euler's criterion would.

For Q odd and $(A, Q) = 1$, if $Q = q_1 \cdots q_k$ is the prime factorization of Q, then the *Jacobi* symbol $\left(\frac{A}{Q}\right)$ $\left(\frac{A}{Q}\right)$ is defined to be $\left(\frac{A}{Q}\right)$ $\left(\frac{A}{Q}\right) = \left(\frac{A}{q_1}\right)$ q_1 $\bigg)\cdots\bigg(\frac{A}{q_k}$ q_k $\big)$. Some basic properties:

If
$$
(A, Q) = 1 = (B, Q)
$$
 then $\left(\frac{AB}{Q}\right) = \left(\frac{A}{Q}\right)\left(\frac{B}{Q}\right)$
\nIf $(A, Q) = 1 = (A, Q')$ then $\left(\frac{A}{QQ'}\right) = \left(\frac{A}{Q}\right)\left(\frac{A}{Q'}\right)$
\nIf $(PP', QQ') = 1$ then $\left(\frac{P'P^2}{Q'Q^2}\right) = \left(\frac{P'}{Q'}\right)$

Warning! If Q is not prime, then $\left(\frac{A}{Q}\right)$ $\left(\frac{A}{Q}\right) = 1$ does not mean that $x^2 \equiv A \pmod{Q}$ has a solution. Most of it's properties are identical to the Legendre symbol:

If *Q* is odd, then
$$
\left(\frac{-1}{Q}\right) = (-1)^{\frac{Q-1}{2}}
$$

If *Q* is odd, then $\left(\frac{2}{Q}\right) = (-1)^{\frac{Q^2-1}{8}}$

If P and Q are both odd, and $(P,Q) = 1$, then $\left(\frac{P}{Q}\right)$ $\left(\frac{P}{P}\right)\left(\frac{Q}{P}\right) = (-1)^{\left(\frac{P-1}{2}\right)\left(\frac{Q-1}{2}\right)}$

Since the Jacobi symbol has essentially the same properties as the Legendre symbol, we can compute them in essentially the same way; extract factors of 2 from the top (and -1), and use reciprocity to compute the rest. The advantage: we don't need to factor the top any further, any odd number will work fine.

> Interlude: $\sum_{p\ \mathrm{prime}}$ 1 $\frac{1}{p}$ diverges.

We showed: the sum of the reciprocals of the primes $\leq N$ is $\geq \ln(\ln(N)) - 4$. In fact, as $n \to \infty$, (\sum p prime, $p \leq n$ 1 $\frac{1}{p}$) – ln(ln(n)) converges to a finite constant M, known as the

Meissel-Mertens constant. It's value is, approximately, 0.26149721284764278....

Continued Fractions.

If we look at each line of the calculation of g.c.d of a and b ,

 $a = bq_0 + r_0, b = r_0q_1 + r_1, \ldots, r_{n-2} = r_{n-1}q_n + r_n, r_n = r_{n-1}q_{n+1} + 0$ they can we re-written as

$$
\frac{a}{b} = q_0 + \frac{r_0}{b}, \frac{b}{r_0} = q_1 + \frac{r_1}{r_0}, \dots, \frac{r_{n-2}}{r_{n-1}} = q_n + \frac{r_n}{r_{n-1}}, \frac{r_n}{r_{n-1}} = q_{n+1}
$$

When we put these together, we get a *continued fraction expansion* of a/b

$$
(*) \qquad \frac{a}{b} = q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{\dots + \frac{1}{q_{n+1}}}}}
$$

which, for the sake of saving space, we will denote $\langle q_0, q_1, \ldots, q_{n+1} \rangle$. Note that, conversely, given a collection q_0, \ldots, q_{n+1} of integers, we can construct a rational number, which we denote $\langle q_0, q_1, \ldots, q_{n+1} \rangle$, by the formula (*).

Formally, we can try to do the same thing with any real number x ; i.e, "compute" the g.c.d. of x and 1 :

 $x = 1 \cdot a_0 + r_0$, $1 = r_0 a_1 + r_1$, ..., $r_{n-2} = r_{n-1} a_n + r_n$, where the a_i 's are integers.

Unlike for the rational number a/b , if x is irrational, we shall see that this process does not terminate, giving us an "infinite" continued fraction expansion of x, $\langle a_0, a_1, a_2 \ldots \rangle$. Our main goal is to figure out what this sequence of integers means!

First, a slightly different perspective:

 $x = a_0 + r_0$ with $0 \le r_0 < 1$ means $a_0 = |x|$ is the largest integer $\le x$; blah is the greatest integer function. $1 = r_0a_1 + r_1$ with $0 \le r_1 < r_0$ means $1/r_0 = a_1 + (r_1/r_0) = a_1 + x_1$ with $0 \leq x_1 < 1$, so $q_1 = |1/r_0|$. In general, the process of extracting the continued fraction expansion of x looks like:

(**) $x = |x| + r_0 = a_0 + r_0, \quad 1/r_0 = \lfloor 1/r_0 \rfloor + r_1 = a_1 + r_1, \ldots,$ $1/r_{n-1} = |1/r_{n-1}| + r_n = a_n + r_n, \ldots$

If we stop this at any finite stage, then we can, just as in the case of a rational number a/b , reassemble the pieces to give

$$
x = \langle a_0, a_1, \ldots, a_{n-1}, a_n + r_n \rangle = \langle a_0, a_1, \ldots, a_{n-1}, a_n, 1/r_n \rangle
$$

If we ignore the last r_n , we find that $\langle a_0, a_1, \ldots, a_{n-1}, a_n \rangle$ is a rational number (proof: induction on *n*), called the *n*th convergent of x. The integers a_n are called the *n*th partial quotients of x. Note that since $0 \le r_0 < 1$, $1/r_0 > 1$, so $a_1 \ge 1$. This is true for all later calculations, so $a_i \geq 1$ for all $i \geq 1$. This sort of continued fraction expansion is what is called simple. We will, in our studies, only deal with simple continued fractions.

For example, we can compute that, for $x = \sqrt{2}$, $a_0 = 1$, $x_0 = \sqrt{2} - 1$, $1/r_0 = \sqrt{2} + 1$, $a_1 = 2, r_1 = \sqrt{2} - 1 = r_0$, so the pattern will repeat, and $\sqrt{2}$ has continued fraction expansion $\langle 1, 2, 2, \ldots \rangle$. By computing some partial quotients, one can show that π has expansion that begins $\langle 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, \ldots \rangle$. Euler showed that e $= \langle 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, \ldots \rangle$.

By looking at the expression for a continued fraction, that we started with, it should be apparent that

$$
\langle a_0, a_1, \ldots, a_{n-1}, a_n \rangle = \langle a_0, a_1, \ldots, a_{n-1} + \frac{1}{a_n} \rangle = a_0 + \frac{1}{\langle a_1, \ldots, a_{n-1}, a_n \rangle}
$$

From this it follows, for example, that $\langle a_0, a_1, \ldots, a_{n-1}, a_n \rangle = \langle a_0, a_1, \ldots, a_{n-1}, a_n - 1, 1 \rangle$. But these are the only such equalities:

Prop: If $\langle a_0, a_1, \ldots, a_n \rangle = \langle b_0, b_1, \ldots, b_m \rangle$ and $a_n, b_m > 1$, then $n = m$ and $a_i = b_i$ for all $i = 0, \ldots, n$.

Computing
$$
\langle a_0, a_1, ..., a_n \rangle
$$
 from $\langle a_0, a_1, ..., a_{n-1} \rangle$:
\n $\langle a_0, a_1, ..., a_n \rangle = \frac{h_n}{k_n}$, where $h_{-2} = 0$, $k_{-2} = 0$, $h_{-1} = 1$, $k_{-1} = 0$, and for $i \ge 0$,
\n $h_i = a_i h_{i-1} + h_{i-2}$ and $k_i = a_i k_{i-1} + k_{i-2}$.

The proof is by induction. This, in turn implies: For every $i \ge 0$, $h_i k_{i-1} - h_{i-1} k_i = (-1)^{i-1}$ (which implies that $(h_i, k_i) = 1$), and $h_i k_{i-2} - h_{i-2} k_i = (-1)^i a_i$.

Note: None of these formulas actually require that the a_i 's be integers.

for
$$
x = \langle a_0, a_1, \dots, a_{n-1}, a_n + r_n \rangle = \langle a_0, a_1, \dots, a_{n-1}, a_n, \frac{1}{r_n} \rangle
$$
, if we set $\langle a_0, a_1, \dots, a_{n-1}, a_n \rangle = x_n$,

then these formulas imply that

 $x_{2n} < x_{2n+2}$ and $x_{2n-1} > x_{2n+1}$ for every n, and $x_{2n} - x_{2n-1} =$ 1 $k_{2n-1}k_{2n}$

And since the numerator of

 $x - \langle a_0, a_1, \ldots, a_{n-1}, a_n \rangle = \langle a_0, a_1, \ldots, a_{n-1}, a_n + r_n \rangle - \langle a_0, a_1, \ldots, a_{n-1}, a_n \rangle,$ we can compute, is $r_n(h_{n-1}k_{n-2}-h_{n-2}k_{n_1})$ (and the denomenator is positive), we have that $x_{2n} < x < x_{2n+1}$. So since $x_{2n} - x_{2n-1} \to 0$ as $n \to \infty$, we find that $x_n \to x$, In particular, $|x - x_{n-1}| < |x_{n-1} - x_n| = 1/(k_{n-1}k_n)$ for every n. This implies that if the

 r_n are never 0 (i.e., the continued fraction process is really an infinite one), then since $0 < |k_n(x - x_n)| = |k_n x - k_n| < 1/k_{n-1}$, we find that x is not rational.

This last observation requires us to know that the k_n are getting arbitrarily large. But note that since $a_i \ge 1$ for every $i > 0$, $k_{-1} = 0$, $k_0 = 1$, and $k_i = a_i k_{i-1} + k_{i-2} \ge k_{i-1} + k_{i-2}$ for every $i \geq 1$, we can see by induction that $k_n \geq$ the n^{th} Fibonacci number (which is defined by $F_i = F_{i-1} + F_{i-2}$, and the Fibonacci numbers grow very fast!

Based on these facts, we denote
$$
x = \lim_{n \to \infty} \langle a_0, \dots, a_n \rangle = \langle a_0, a_1, \dots \rangle
$$
. Then

$$
\langle a_0, a_1, \dots \rangle = a_0 + \frac{1}{\langle a_1, a_2, \dots \rangle}
$$

which in turn implies that:

If $\langle a_0, a_1, \ldots \rangle = \langle b_0, b_1, \ldots \rangle$, then $a_i = b_i$ for all i.

If $1 \leq b < k_n$, then $|x$ a $\frac{a}{b}$ | $\geq |x$ h_n $\frac{k_n}{k_n}$ for all integers a; in fact if $1 \leq b < k_{n+1}$, then $|bx - a| \ge |k_n x - h_n|$ for all integers a.

If
$$
x \notin \mathbb{Q}
$$
 and $a, b \in \mathbb{Z}$, with $|x - \frac{a}{b}| < \frac{1}{2b^2}$, then $\frac{a}{b} = \frac{h_n}{k_n}$ for some n.

Repeating continued fraction expansions: A continued fraction $\langle a_0, a_1, \ldots \rangle$ will repeat (i.e, $a_n = a_{n+m}$ for all $n \geq N$) precisely when $x_{n-1} = x_{n+m-1}$, since from (**) above, all of the calculations of the partial quotients, starting from some fixed number, will depend only on that fixed number. A real number x has a repeating continued fraction expansion if and only if x is an (irrational) root of a quadratic equation, what we call a *quadratic irrational*. In particular,

For any non-square positive integer $n, \sqrt{n} + \lfloor \sqrt{n} \rfloor = \langle \overline{2a_0, a_1, \ldots a_m} \rangle$ is purely periodic. This implies that $\sqrt{n} = \langle a_0, a_1, \ldots, a_m, a_{n_0} \rangle$

Pell's Equation.

It turns out that the continued fraction expansion of \sqrt{n} can help us find the integer solutions x, y of the equation

$$
(***) \qquad x^2 - ny^2 = N
$$

for fixed values of n and N. This equation is known as *Pell's equation*.

First the less interesting cases. If $n < 0$, then any solution to $N = x^2 - ny^2 \ge x^2 + y^2$ has $|x|, |y| \le \sqrt{N}$, which can be found by inspection. If $n = m^2$ for some m, then $N =$ $x^2 - m^2y^2 = (x - my)(x + my)$, so $x - my, x + my$ both divide N, so, e.g., their sum, 2x divides N^2 . We can then find all possible x, and so all solutions, by inspection. We now focus on finding solutions for $n \geq 1$ not a perfect square. \sqrt{n} is therefore irrational.

Then if
$$
1 \le N \le \sqrt{n}
$$
 is not a perfect square, then $N = x^2 - ny^2$ implies that $|\sqrt{n} - \frac{x}{y}| = \frac{N}{|x + \sqrt{ny}| \cdot |y|} < \frac{N}{2\sqrt{ny^2}} < \frac{1}{2y^2}$, so $\frac{x}{y} = \frac{h_m}{k_m}$ for some m.
(The same, it turns out, is true for $-\sqrt{n} \le N \le -1$.) But which m?

 $\sqrt{n} = \langle a_0, a_1, \ldots a_m, a_{0}\rangle$ means that $\sqrt{n} = \langle a_0, a_1, \ldots a_m, a_0 + \sqrt{n} \rangle$. In general, at any point where we stop computing the continued fraction of \sqrt{n} , we find that

$$
\sqrt{n} = \langle b_0, b_1, \dots b_s, \frac{\sqrt{n} + a}{b} \rangle
$$
, where $\frac{1}{r_s} = \frac{\sqrt{n} + a}{b}$

(so a and b take on only finitely many values, because r_s does). But then we can compute that

$$
\sqrt{n} = \frac{(\frac{\sqrt{n} + a}{b})h_s + h_{s-1}}{(\frac{\sqrt{n} + a}{b})k_s + k_{s-1}},
$$
 which implies that $h_s^2 - nk_s^2 = b(h_sk_{s-1} - h_{s-1}k_s) = (-1)^{s-1}b$.

To compute the b's, we note that, by induction, $r_i =$ $\sqrt{n} - m_i$ qi and $\frac{1}{ }$ ri $=\frac{q_i}{\sqrt{q_i}}$ $\sqrt{n} - m_i$ =

 $\sqrt{n} + m_i$ q_{i+1} , so we can inductive compute the quotients q_i from the equations \cdot /

$$
q_{i+1} = \frac{n - m_i^2}{q_i}, \ a_{i+1} = \lfloor \frac{\sqrt{n} + m_i}{q_{i+1}} \rfloor, \text{ and } m_{i+1} = a_{i+1}q_{i+1} - m_i
$$

and then $h_i^2 - nk_i^2 = (-1)^{i-1}q_{i+1}$.

In particular, solutions to $x^2 - ny^2 = 1$ exist, because $b = 1$ occurs as the denomenator of x_i for $i = m+1, 2m+1, 3m+1, \ldots$. These are either all odd (if m is even), or every other one is odd. For these values, $i-1$ is even, so $h_i^2 - nk_i^2 = b(h_ik_{i-1} - h_{i-1}k_i) = (-1)^{i-1}b = 1$.

There is an alternative approach to generating solutions to $(*^{**})$. If we know that x^2 $ny^2 = N$ and $x_0^2 - ny_0^2 = 1$, then

 $(x^2 - ny^2)(x_0^2 - ny_0^2)^m = N = (x - \sqrt{ny})(x_0 - \sqrt{ny_0})^m(x + \sqrt{ny})(x_0 + \sqrt{ny_0})^m$ But $(x^2 - ny^2)(x_0^2 - ny_0^2)^m = A - \sqrt{n}B$ for some A, B, and then $(x^2 + ny^2)(x_0^2 + ny_0^2)^m =$ $A+\sqrt{n}B$ (because of the properties of *conjugates* of quadratic irrationals). Then $(A - \sqrt{n}B)(A + \sqrt{n}B) = A^2 - nB^2 = N$.

Sums of four squares.

For every $n \in \mathbb{N}$, there are $x, y, z, w \in \mathbb{Z}$ so that $x^2 + y^2 + z^2 + w^2 = n$. Elements of the proof: $(x_1^2 + y_1^2 + z_1^2 + w_1^2)(x_2^2 + y_2^2 + z_2^2 + w_2^2) =$ $(x_1x_2 + y_1y_2 + z_1z_2 + w_1w_2)^2 + (x_1y_2 - x_2y_1 + z_2w_1 - z_1w_2)^2 +$ $(x_1z_2 - x_2z_1 + y_1w_2 - w_1y_2)^2 + (x_1w_2 - x_2w_1 + y_2z_1 - y_1z_2)^2$

so we may focus on primes p. $p = 2 = 1^2 + 1^2 + 0^2 + 0^2$, so focus on odd primes. Then $0 \le x, y \le (p-1)/2$ and $x \ne y$ implies $x^2 \not\equiv y^2 \pmod{p}$, so for any a, x^2 and $a - y^2$, with $0 \le x, y \le (p-1)/2$ must have a value, mod p, in common (otherwise $x^2 + y^2 - a$ takes on $p + 1$ different values, mod p). So $x^2 + y^2 \equiv -1 \pmod{p}$ has a solution. Then $x^2 + y^2 + 1^2 + 0^2 = Mp$ for some M; with the restrictions on x, y, we have $M < p$. Choose the smallest positive M with $Mp = x^2 + y^2 + z^2 + w^2$. M is odd, since otherwise (after renaming the variables to group them by parity)

$$
\frac{M}{2}p = (\frac{x-y}{2})^2 + (\frac{x+y}{2})^2 + (\frac{z-w}{2})^2 + (\frac{z+w}{2})^2
$$

If $M > 1$, then choose $-\frac{M}{2} \le x_1, y_1, z_1, w_1 \le \frac{M}{2}$ with $x \equiv x_1 \pmod{M}$, etc. then $x_1^2 + y_1^2 + z_1^2 + w_1^2 \equiv x^2 + y^2 + z^2 + w^2 \equiv 0 \pmod{M}$, so $x_1^2 + y_1^2 + z_1^2 + w_1^2 = NM$ with (from the restrictions on x_1 , etc.) $N < M$. Then

 $NM^2p = (x_1^2 + y_1^2 + z_1^2 + w_1^2)(x^2 + y^2 + z^2 + w^2) =$ a sum of four squares with, we can compute, every term a multiple of M! Dividing through by M^2 , we find that Np is a sum of four squares, with $N < M$, contradicting the choice of M. So $M = 1$, and we are done.

Geometric solutions to quadratic equations.

For equations such as $x^2 + 10y^2 = 19z^2$ where we know one solution (like $(3,1,1)$), we can find all solutions using a geometric process. Setting $X = x/z$, $Y = y/z$, our equation becomes

(****)
$$
X^2 + 10Y^2 = 19
$$
 (in this case, an ellipse)

for which we know one (rational) solution; $(3,1)$. Our goal is now to find all other *rational* solutions (the denomenator will be our z). But if we imagine having another rational solution (a, b) , then the line through $(3, 1)$ (in our case) and (a, b) will have rational slope. If we take the equation for this line and plug it into $(****)$, we get a quadratic equation with (because of the rational slope) rational coefficients, for which we know one, rational, solution (in our case, $X = 3$). The other solution must therefore be rational, and the corresponding point on the line then has rational coordinates. In our example, this procedure looks like

 $Y = r(X-3)+1$, so $x^2+10(r(X-3)+1)^2 = 19$, i.e., $(X^2-9)+10r^2(X-3)^2+20r(X-3) = 0$, i.e., $(X-3)(X+3+10r^2X-30r^2+20r) = 0$. So $X = 3$ or $(10r^2+1)X-(30r^2-20r-3) = 0$, i.e., (setting $r = a/b$)

$$
X = \frac{30r^2 - 20r - 3}{10r^2 + 1} = \frac{30a^2 - 20ab - 3b^2}{10a^2 + b^2}
$$

so $x = 30a^2 - 20ab - 3b^2$, $z = 10a^2 + b^2$ and (by plugging into the equation for the line) $y = -(10a^2 + 6ab - b^2)$ provide solutions.