
Math 445

Handy facts for the second exam

Don’t forget the handy facts from the first exam!

Quadratic Reciprocity.

Quadratic Residues: If x2 ≡ a (mod n) has a solution, a is a quadratic residue modulo
n . If it doesn’t, a is a quadratic non-residue modulo n . Euler’s Criterion gives us a test:

if p is a prime, then a is a quadratic residue mod n ⇔ a
p−1

2 ≡ 1 (mod p).

The Legendre symbol; for p an odd prime,
(a

p

)

=











0 if p|a
1 if a is a quadratic residue mod p

−1 if a is a quadratic non-residue mod p

By Euler’s criterion,
(a

p

)

≡ a
p−1

2 (mod p) .

Basic facts:
(
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)
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2 ,
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)
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a+pk
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)
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)

.

Lemma of Gauss: Let p be an odd prime and (a, p) = 1. For 1 ≤ k ≤ p−1
2 let ak = ptk +ak

with 0 ≤ ak ≤ p − 1 . Let A = {k : ak > p
2} , and let n = |A| = the number of elements

in A . Then
(a

p

)

= (−1)n .

Theorem: Let p be an odd prime and (a, 2p) = 1 (i.e., (a, p) = 1 and a is odd). Let

t =
∑

p−1

2

j=1 baj
p
c . Then

(a

p

)

= (−1)t .

Along the way, this gives:
(

2
p

)

= (−1)n = (−1)
p2

−1

8 . And putting it all together, we get

Gauss’ Law of Quadratic Reciprocity:

If p and q are distinct odd primes, then
(p

q

)(q

p

)

= (−1)(
p−1

2
)( q−1

2
) .

The facts
(

p
q

)(

q
p

)

= (−1)(
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2
)( q−1

2
) for distinct odd primes,
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2
p

)

= (−1)
p2

−1

8 , and
(
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p

)

= (−1)
p−1

2

allow us to carry out the calculations of Legendre symbols much more simply than Euler’s
criterion would.

For Q odd and (A, Q) = 1, if Q = q1 · · · qk is the prime factorization of Q, then the Jacobi

symbol
(

A
Q

)

is defined to be
(

A
Q

)

=
(

A
q1

)

· · ·
(

A
qk

)

.

Some basic properties:

If (A, Q) = 1 = (B, Q) then
(

AB
Q

)

=
(

A
Q

)(

B
Q

)

If (A, Q) = 1 = (A, Q′) then
(

A
QQ′

)

=
(

A
Q

)(

A
Q′

)

If (PP ′, QQ′) = 1 then
(

P ′P 2

Q′Q2

)

=
(

P ′

Q′

)
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Warning! If Q is not prime, then
(

A
Q

)

= 1 does not mean that x2 ≡ A (mod Q) has a

solution. Most of it’s properties are identical to the Legendre symbol:

If Q is odd, then
(

−1
Q

)

= (−1)
Q−1

2

If Q is odd, then
(

2
Q

)

= (−1)
Q2

−1

8

If P and Q are both odd, and (P, Q) = 1, then
(

P
Q

)(

Q
P

)

= (−1)(
P−1

2
)( Q−1

2
)

Since the Jacobi symbol has essentially the same properties as the Legendre symbol, we
can compute them in essentially the same way; extract factors of 2 from the top (and −1),
and use reciprocity to compute the rest. The advantage: we don’t need to factor the top
any further, any odd number will work fine.

Interlude:
∑

p prime
1
p

diverges.

We showed: the sum of the reciprocals of the primes ≤ N is ≥ ln(ln(N)) − 4 . In fact,

as n → ∞, (
∑

p prime,p≤n

1

p
) − ln(ln(n)) converges to a finite constant M , known as the

Meissel-Mertens constant. It’s value is, approximately, 0.26149721284764278... .

Continued Fractions.

If we look at each line of the calculation of g.c.d of a and b,

a = bq0 + r0, b = r0q1 + r1, . . . , rn−2 = rn−1qn + rn, rn = rn−1qn+1 + 0

they can we re-written as
a

b
= q0 +

r0

b
,

b

r0
= q1 +

r1

r0
, . . .

rn−2

rn−1
= qn +

rn

rn−1
,

rn

rn−1
= qn+1

When we put these together, we get a continued fraction expansion of a/b

(*)
a

b
= q0 +

1

q1 + 1
q2+

1

...+ 1
qn+1

which, for the sake of saving space, we will denote 〈q0, q1, . . . , qn+1〉. Note that, conversely,
given a collection q0, . . . , qn+1 of integers, we can construct a rational number, which we
denote 〈q0, q1, . . . , qn+1〉, by the formula (*).

Formally, we can try to do the same thing with any real number x; i.e, “compute” the
g.c.d. of x and 1 :

x = 1 · a0 + r0, 1 = r0a1 + r1, . . . , rn−2 = rn−1an + rn, where the ai’s are integers.

Unlike for the rational number a/b, if x is irrational, we shall see that this process does
not terminate, giving us an “infinite” continued fraction expansion of x, 〈a0, a1, a2 . . .〉 .
Our main goal is to figure out what this sequence of integers means!
First, a slightly different perspective:
x = a0+r0 with 0 ≤ r0 < 1 means a0 = bxc is the largest integer ≤ x; bblahc is the greatest

integer function. 1 = r0a1 + r1 with 0 ≤ r1 < r0 means 1/r0 = a1 +(r1/r0) = a1 +x1 with
0 ≤ x1 < 1, so q1 = b1/r0c. In general, the process of extracting the continued fraction
expansion of x looks like:
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(**) x = bxc + r0 = a0 + r0, 1/r0 = b1/r0c + r1 = a1 + r1, . . . ,
1/rn−1 = b1/rn−1c + rn = an + rn, . . .

If we stop this at any finite stage, then we can, just as in the case of a rational number
a/b, reassemble the pieces to give

x = 〈a0, a1, . . . , an−1, an + rn〉 = 〈a0, a1, . . . , an−1, an, 1/rn〉
If we ignore the last rn, we find that 〈a0, a1, . . . , an−1, an〉 is a rational number (proof:
induction on n), called the nth convergent of x. The integers an are called the nth partial

quotients of x. Note that since 0 ≤ r0 < 1, 1/r0 > 1, so a1 ≥ 1. This is true for all later
calculations, so ai ≥ 1 for all i ≥ 1. This sort of continued fraction expansion is what is
called simple. We will, in our studies, only deal with simple continued fractions.

For example, we can compute that, for x =
√

2, a0 = 1, x0 =
√

2 − 1, 1/r0 =
√

2 + 1,
a1 = 2, r1 =

√
2 − 1 = r0, so the pattern will repeat, and

√
2 has continued fraction

expansion 〈1, 2, 2, . . .〉. By computing some partial quotients, one can show that π has
expansion that begins 〈3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, . . .〉 . Euler showed that e
= 〈2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, . . .〉 .

By looking at the expression for a continued fraction, that we started with, it should be
apparent that

〈a0, a1, . . . , an−1, an〉 = 〈a0, a1, . . . , an−1 +
1

an

〉 = a0 +
1

〈a1, . . . , an−1, an〉
From this it follows, for example, that 〈a0, a1, . . . , an−1, an〉 = 〈a0, a1, . . . , an−1, an − 1, 1〉
. But these are the only such equalities:

Prop: If 〈a0, a1, . . . , an〉 = 〈b0, b1, . . . , bm〉 and an, bm > 1, then n = m and ai = bi for
all i = 0, . . . , n.

Computing 〈a0, a1, . . . , an〉 from 〈a0, a1, . . . , an−1〉:

〈a0, a1, . . . , an〉 =
hn

kn

, where h−2 = 0, k−2 = 0, h−1 = 1, k−1 = 0, and for i ≥ 0,

hi = aihi−1 + hi−2 and ki = aiki−1 + ki−2.

The proof is by induction. This, in turn implies:
For every i ≥ 0, hiki−1 − hi−1ki = (−1)i−1 (which implies that (hi, ki) = 1), and

hiki−2 − hi−2ki = (−1)iai .

Note: None of these formulas actually require that the ai’s be integers.

for x = 〈a0, a1, . . . , an−1, an + rn〉 = 〈a0, a1, . . . , an−1, an,
1

rn

〉, if we set

〈a0, a1, . . . , an−1, an〉 = xn,

then these formulas imply that

x2n < x2n+2 and x2n−1 > x2n+1 for every n, and x2n − x2n−1 =
1

k2n−1k2n

And since the numerator of
x − 〈a0, a1, . . . , an−1, an〉 = 〈a0, a1, . . . , an−1, an + rn〉 − 〈a0, a1, . . . , an−1, an〉,
we can compute, is rn(hn−1kn−2 − hn−2kn1

) (and the denomenator is positive), we have
that x2n < x < x2n+1. So since x2n − x2n−1 → 0 as n → ∞, we find that xn → x, In
particular, |x − xn−1| < |xn−1 − xn| = 1/(kn−1kn) for every n. This implies that if the
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rn are never 0 (i.e., the continued fraction process is really an infinite one), then since
0 < |kn(x − xn)| = |knx − hn| < 1/kn−1, we find that x is not rational.
This last observation requires us to know that the kn are getting arbitrarily large. But note
that since ai ≥ 1 for every i > 0, k−1 = 0, k0 = 1, and ki = aiki−1 + ki−2 ≥ ki−1 + ki−2

for every i ≥ 1, we can see by induction that kn ≥ the nth Fibonacci number (which is
defined by Fi = Fi−1 + Fi−2), and the Fibonacci numbers grow very fast!

Based on these facts, we denote x = lim
n→∞

〈a0, . . . , an〉 = 〈a0, a1, . . .〉 . Then

〈a0, a1, . . .〉 = a0 +
1

〈a1, a2, . . .〉
which in turn implies that:

If 〈a0, a1, . . .〉 = 〈b0, b1, . . .〉, then ai = bi for all i.

If 1 ≤ b < kn, then |x − a

b
| ≥ |x − hn

kn

| for all integers a; in fact if 1 ≤ b < kn+1, then

|bx − a| ≥ |knx − hn| for all integers a.

If x /∈ Q and a, b ∈ Z, with |x − a

b
| <

1

2b2
, then

a

b
=

hn

kn

for some n.

Repeating continued fraction expansions: A continued fraction 〈a0, a1, . . .〉 will repeat (i.e,
an = an+m for all n ≥ N) precisely when xn−1 = xn+m−1, since from (**) above, all of the
calculations of the partial quotients, starting from some fixed number, will depend only on
that fixed number. A real number x has a repeating continued fraction expansion if and
only if x is an (irrational) root of a quadratic equation, what we call a quadratic irrational.
In particular,

For any non-square positive integer n,
√

n + b√nc = 〈2a0, a1, . . . am〉 is purely periodic.
This implies that

√
n = 〈a0, a1, . . . am, 2a0〉

Pell’s Equation.

It turns out that the continued fraction expansion of
√

n can help us find the integer
solutions x, y of the equation

(***) x2 − ny2 = N

for fixed values of n and N . This equation is known as Pell’s equation.

First the less interesting cases. If n < 0, then any solution to N = x2 − ny2 ≥ x2 + y2

has |x|, |y| ≤
√

N , which can be found by inspection. If n = m2 for some m, then N =
x2 − m2y2 = (x − my)(x + my), so x − my, x + my both divide N , so, e.g., their sum, 2x
divides N2. We can then find all possible x, and so all solutions, by inspection. We now
focus on finding solutions for n ≥ 1 not a perfect square.

√
n is therefore irrational.

Then if 1 ≤ N ≤ √
n is not a perfect square, then N = x2 − ny2 implies that

|
√

n − x

y
| =

N

|x +
√

ny| · |y| <
N

2
√

ny2
<

1

2y2
, so

x

y
=

hm

km

for some m.

(The same, it turns out, is true for −√
n ≤ N ≤ −1.) But which m?√

n = 〈a0, a1, . . . am, 2a0〉 means that
√

n = 〈a0, a1, . . . am, a0 +
√

n〉. In general, at any
point where we stop computing the continued fraction of

√
n, we find that

√
n = 〈b0, b1, . . . bs,

√
n + a

b
〉, where

1

rs

=

√
n + a

b
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(so a and b take on only finitely many values, because rs does). But then we can compute
that

√
n =

(
√

n+a

b
)hs + hs−1

(
√

n+a

b
)ks + ks−1

, which implies that h2
s − nk2

s = b(hsks−1 − hs−1ks) = (−1)s−1b .

To compute the b’s, we note that, by induction, ri =

√
n − mi

qi

and
1

ri

=
qi√

n − mi

=
√

n + mi

qi+1
, so we can inductive compute the quotients qi from the equations

qi+1 =
n − m2

i

qi

, ai+1 = b
√

n + mi

qi+1
c , and mi+1 = ai+1qi+1 − mi

and then h2
i − nk2

i = (−1)i−1qi+1 .

In particular, solutions to x2 − ny2 = 1 exist, because b = 1 occurs as the denomenator of
xi for i = m+1, 2m+1, 3m+1, . . . . These are either all odd (if m is even), or every other
one is odd. For these values, i−1 is even, so h2

i −nk2
i = b(hiki−1−hi−1ki) = (−1)i−1b = 1

.

There is an alternative approach to generating solutions to (***). If we know that x2 −
ny2 = N and x2

0 − ny2
0 = 1, then

(x2 − ny2)(x2
0 − ny2

0)
m = N = (x −√

ny)(x0 −
√

ny0)
m(x +

√
ny)(x0 +

√
ny0)

m

But (x2 − ny2)(x2
0 −ny2

0)
m = A−√

nB for some A, B, and then (x2 + ny2)(x2
0 + ny2

0)
m =

A +
√

nB (because of the properties of conjugates of quadratic irrationals). Then

(A −√
nB)(A +

√
nB) = A2 − nB2 = N .

Sums of four squares.

For every n ∈ N, there are x, y, z, w ∈ Z so that x2 + y2 + z2 + w2 = n.

Elements of the proof:

(x2
1 + y2

1 + z2
1 + w2

1)(x
2
2 + y2

2 + z2
2 + w2

2) =

(x1x2 + y1y2 + z1z2 + w1w2)
2 + (x1y2 − x2y1 + z2w1 − z1w2)

2 +

(x1z2 − x2z1 + y1w2 − w1y2)
2 + (x1w2 − x2w1 + y2z1 − y1z2)

2

so we may focus on primes p. p = 2 = 12 + 12 + 02 + 02, so focus on odd primes. Then

0 ≤ x, y ≤ (p − 1)/2 and x 6= y implies x2 6≡ y2 (mod p), so for any a, x2 and a − y2,
with 0 ≤ x, y ≤ (p − 1)/2 must have a value, mod p, in common (otherwise x2 + y2 − a
takes on p + 1 different values, mod p). So x2 + y2 ≡ −1 (mod p) has a solution. Then
x2 + y2 +12 +02 = Mp for some M ; with the restrictions on x, y, we have M < p. Choose
the smallest positive M with Mp = x2 + y2 + z2 + w2. M is odd, since otherwise (after
renaming the variables to group them by parity)

M

2
p = (

x − y

2
)2 + (

x + y

2
)2 + (

z − w

2
)2 + (

z + w

2
)2

If M > 1, then choose −M

2
≤ x1, y1, z1, w1 ≤ M

2
with x ≡ x1 (mod M), etc. then

x2
1 + y2

1 + z2
1 + w2

1 ≡ x2 + y2 + z2 + w2 ≡ 0 (mod M), so x2
1 + y2

1 + z2
1 + w2

1 = NM with
(from the restrictions on x1, etc.) N < M . Then
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NM2p = (x2
1 + y2

1 + z2
1 + w2

1)(x
2 + y2 + z2 + w2) = a sum of four squares with, we can

compute, every term a multiple of M ! Dividing through by M2, we find that Np is a sum
of four squares, with N < M , contradicting the choice of M . So M = 1, and we are done.

Geometric solutions to quadratic equations.

For equations such as x2 + 10y2 = 19z2 where we know one solution (like (3,1,1)), we can
find all solutions using a geometric process. Setting X = x/z, Y = y/z, our equation
becomes

(****) X2 + 10Y 2 = 19 (in this case, an ellipse)

for which we know one (rational) solution; (3,1). Our goal is now to find all other rational

solutions (the denomenator will be our z). But if we imagine having another rational
solution (a, b), then the line through (3, 1) (in our case) and (a, b) will have rational slope.
If we take the equation for this line and plug it into (****), we get a quadratic equation
with (because of the rational slope) rational coefficients, for which we know one, rational,
solution (in our case, X = 3). The other solution must therefore be rational, and the cor-
responding point on the line then has rational coordinates. In our example, this procedure
looks like

Y = r(X−3)+1, so x2+10(r(X−3)+1)2 = 19, i.e., (X2−9)+10r2(X−3)2+20r(X−3) = 0,
i.e., (X−3)(X+3+10r2X−30r2+20r) = 0. So X = 3 or (10r2+1)X−(30r2−20r−3) = 0,
i.e., (setting r = a/b)

X =
30r2 − 20r − 3

10r2 + 1
=

30a2 − 20ab − 3b2

10a2 + b2

so x = 30a2 − 20ab − 3b2, z = 10a2 + b2 and (by plugging into the equation for the line)
y = −(10a2 + 6ab − b2) provide solutions.
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