Math 445
Handy facts since the second exam

Geometric solutions.

For equations such as 22 +10y? = 1922 where we know one solution (like (3,1,1)), we can find
all solutions using a geometric process. Setting X = z/z, Y = y/z, our equation becomes
(¥*FF) X2 4+ 10Y? = 19 (in this case, an ellipse)
for which we know one (rational) solution; (3,1). Our goal is now to find all other rational
solutions (the denomenator will be our z). But if we imagine having another rational
solution (a, b), then the line through (3, 1) (in our case) and (a, b) will have rational slope.
If we take the equation for this line and plug it into (****), we get a quadratic equation
with (because of the rational slope) rational coefficients, for which we know one, rational,
solution (in our case, X = 3). The other solution must therefore be rational, and the cor-

responding point on the line then has rational coordinates. In our example, this procedure
looks like

Y =7(X—-3)+1, s0 22 +10(r(X —3)+1)2 = 19, i.e., (X% —9)+10r?(X —3)24+20r(X —3) = 0,
i.e., (X —=3)(X+3+10r2X —30r2+20r) = 0. So X = 3 or (10r2+1)X —(30r2—20r—3) = 0,
i.e., (setting r = a/b)

_ 30r —20r —3 _ 30a® — 20ab — 3b

10241 10a? + b2

so x = 30a? — 20ab — 3b?, z = 10a® + b? and (by plugging into the equation for the line)
y = —(10a? + 6ab — b?) provide solutions.

X

Rational points on curves

For more general curves, defined by polynomials f(z,y) = 0 of higher degree, looking at how
lines meet the curve can provide a wealth of information.

Notation: C¢(R) = {(z,y) € R? : f(x,y) = 0} For the most part, we will focus on cubic
polynomials f, whose highest degree monomial is 23, 2%y, zy?, and/or y3.

If L is a line (generically, defined by an equation ax + by + ¢ = 0, a or b # 0), which we
usually write y = ma + b = L(x) (if not vertical: x = ¢), any point on both L and C¢(R)
satisfies p(x) = f(x, mz + b) = 0. This is a polynomial of degree d = the (total) degree of
f. It therefore has exactly d (complex) roots (counting multiplicity), unless it is identically
0. So if L meets C¢(R) in more than d points (counting multiplicity; we will consider this
shortly), then p = 0, i.e., P € L implies P € C¢(R), i.e., L C C¢(R). Even more, if L
is defined by L(x,y) = ax + by + ¢ = 0 and L meets C¢(R) in more than d points, then
f(x,y) = L(z,y)K(z,y) for some polynomial K (of degree d — 1).

More generally, we can refine this by considering points in C¢(R) with multiplicity. In the
one-variable case, a point a is a solution to p(x) = 0 with multiplicity m if a is a root of
both p and the first m—1 derivatives of p (this is equivalent to p(x) having factor (z—a)™).
In the multivariable case, P = (a,b) is a root of f(x,y) with multiplicity m if P is a root
of both f and every partial derivative (9/9z)*(9/dy)?(f) for i +j < m. For the most part
we will worry about multiplicity 2, i.e., P is a root of f,0f/0x, and 0f/0y. Such a point
is called a double point of C¢(R). More generally, a point of a curve C¢(R) of multiplicity
greater than 1 is called a singular point. A curve with no singular points is called smooth.
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As with quadratic curves, we can use knowledge of some rational points in Cf(R), for f
a cubic polynomial, to find more, using lines. The idea now is to use the line through
two solutions to find a third. Such a line will have rational slope, given by an equation
y = L(x) = mx + b. If we look to solve the polynomial p(x) = f(z, L(z)) = 0, our two
points provide two solutions; the third root (which we can find by factoring) will give us
the third solution (plugging into y = L(z) to recover its y-value). This is known as the
chord method.

If the cubic curve C¢(R) has a double point P, we don’t even need a second point; P will serve
for both (so long as it has rational coordinates!). Every line with rational slope through
P will give a third, rational, point; in fact, every rational solution can be found this way
(remembering the line with infinite slope...).

If we only know one rational point P = (a,b) in C¢(R), we can still find a line for which
p(z) = f(z,L(z)) = 0 has a double root; the tangent line to C¢(R), is defined by the
equation f(P)(x—a)+f,(P)(y—b) = 0, which implies (via the chain rule) p(a) = p’(a) = 0,
i.e., a is a double root. [If f has rational coefficients, this line has rational slope.| The third
root then gives us a new rational point in Cy(R). This method is known as the tangent
method.

Projective space.

There are some situations when this approach seems to break down; for example with an

equation like
flzy) =y* - (z° — 5z +3)
the line through the solutions (1,1) and (1, —1) (i.e., the vertical line z = 1), meets C¢(R)
in only two points. [Plug in z = 1 to verify this.] It is going to be very important to
us, however, that this approach not break down, and so we will take the (at the moment
somewhat irrational) step of “inventing” new solutions, to cover these cases. The idea is
to think of our solutions as living in a larger space; real projective space Po(R). The idea
is to first projectivize our equation, replacing f(x,y) = 0 with the homogeneous equation
F(X,Y,2)=2Z3f(X/Z,Y]Z) =0

For example, our equation becomes Y27 — (X3 — 5XZ2 4+ 3Z3) = 0. Such an equation
has the property that (X,Y, Z) is a solution implies (a X, aY,aZ) for any a, i.e., solutions
are “really” lines of solutions through the origin. P(R) is nothing more than this; it
is the set of all lines through the origin in R3; since exact values of the coordinates are
unimportant, we write points in Py(R) as X : Y : Z rather than (X,Y,Z). Since any
solution to F(X,Y,Z) = 0 can be replaced with a constant multiple, any solution with
Z # 0 has a corresponding solution with Z = 1. But if X : Y : 1 is a solution, then
f(X,Y) =0, ie., it gives an ordinary solution in C;(R). The solutions with Z = 0 do not
have any corresponding solutions in Cs(R), as we have originally interpreted it; they are
our extra solutions “at infinity” in Py(R). They are found by projectivizing f, and setting
Z = 0. In our example above, the point 0 : 1: 0 is a solution. It is the third point on our
vertical line. It can in fact be interpreted as the vertical line; points in R? correspond to
lines X : Y : Z with Z # 0, by looking at where the line meets the plane Z = 1 in R3. The
points X : Y : 0, on the other hand, are lines in the XY-plane in R3, with slope Y/X. So
0:1:0 corresponds to the vertical line in the XY -plane. In general, a : b : 0 is the point
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in P3(R) where all lines of slope b/a meet!
Elliptic curves.

The type of curve where these tools prove the most useful are the elliptic curves. A cubic
curve Cs(R) is called elliptic if it has no singular point (in P2(R)), and f has no linear
factor (i.e., C¢(R) contains no line). The quickest test for this is to verify both of these
properties over the complex numbers C; and for this, we have the useful fact that

The polynomial f(z,y) = y? — q(z) (¢ cubic) defines an elliptic curve over C if and only if ¢
has no repeated root (over C). For such a curve, we have that any line through two points
A, B of C¢(R) intersects C¢(R) in a unique third point (in P2(R)), which find as above.
We denote this third point AB. [When A = B, it is understood that the line meant is the
tangent line to C(R) at A.] But this turns out to be, by itself, not terribly useful as a
binary operation; it is, for example, not associative. [It has the useful properties, however,
that AB=BA, and AB=C implies AC=B and BC=A.] To make a useful operation, we
proceed as follows.

Pick any point in C¢(R); call it 0. Then given A, B € C¢(R), we first find AB as above, and
then find 0(AB), and call it 0(AB) = A + B. This product, it turns out, is much more
well behaved:

(1) A+ B=B+ Aforall A, B e C¢(R)

(2) A+0=Aforall AeC¢(R)

(3) For every A € Cf(R), there is a unique B € C¢(R) with A+ B =0

[In fact, B = A(00) .]

(4) For all A,B,C € C¢(R), (A+B)+C=A+ (B+C)

The last fact is the most involved to verify; it uses the fact:

If f and g are cubic polynomials, f has no linear factor, Py, ..., Py are distinct points in
Cr(R)NCy(R) and Py, P, P3 lie in a line L, then there is a quadratic polynomial ¢(z,y)
so that Py, ..., Py € Ci(R).

[Typically, six points in the plane do not lie on a quadratic (other than the zero polynomial).]

When we apply this to the points B, BC,C, AB,0,0(AB), A,0(BC), (0(AB))C, and the poly-
nomial g(x,y) = Li(x,y)Lo(x,y)Ls(x,y), where the line Ly contains B, AB, A, Ly contains
BC,0,0(BC), and L3 contains C,0(AB), (0(AB))C, we find that the last six points lie on
a quadratic. But the first three of these lie on a line, and so the last three do, as well.
This implies that

(0(AB))C = AU(BC))

and so (A+ B)+ C = 0((0(AB))C) = 0(A(0(BC))) = A+ (B + C). This argument really
only applies if the nine points above are actually distinct. When they are not, we perturb
the points 0, A, B, C' slightly to make the nine points distinct, and apply “continuity”.

Taken together, the four properties (1) through (4) tell us that C¢(R) is an abelian group
under +. If we choose 0 to be a rational point (i.e., 0 € C¢(Q)), then C;(Q) forms a
subgroup of C¢(R).

We can see that the actual choice of 0 certainly effects the definition of the addition, but it
does not have a big effect on the structure of the resulting group; if we choose a different
point 0" and define A® B = 0'(AB), then A® B = A+ B — (', and therefore the function
P : (Cf(R),®) — (C;(R),+) defined by ®(A) = A — (', is an isomorphism of groups.
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Focusing on elliptic curves of the form f(x,y) = y? — (3 — ax — b) (which is all we will need
for our applications), and using the point 0 : 1 : 0 at infinity as 0, we can find explicit
formulas for the addition of points. If A = (x1,y1) and B = (z2,y2), then (noting that
0(z,y) = (z,—y)) A+ B = 0(AB) will equal

Y2 — Y1

(m? — 21 — 29, —(y1 + m(m? — 221 — x9))) where m = ,if x1 # xo
Tro — X1
0 if 17 = w2 and y1 # 2
303 —
(M? —2x1, —(y1 + M(M? — 311))) where M = x21 a, if 1 = z9 and y; = yo
Y1

Factoring integers using elliptic curves

Elliptic curves have turned out to have many uses in the “real” world. We will look at one
of them: providing a fast method to factor large integers. It uses the group operation on
Cs(Q) , and is based on the fact that for a finite group G, with order n, every element
g € G satisfies n - g = 0.

Our approach, the Elliptic Curve Method, is modelled on another factoring algorithm due
to Pollard, called the Pollard (p — 1)-test. The idea is that if IV is a (large) integer, with
prime factor p, then by Fermat, for any a relatively prime to p, pla?~! —1, and so the g.c.d.
(aP~1—1,N) > 1. As usual, the problem is that we don’t know p, but for this test we guess
that p — 1 consists of a product of fairly small primes, and test (™ — 1, N) for n a (large)
product of fairly small numbers, in an effort to find a g.c.d. that is both greater than 1 and
less than N, giving us a proper factor of N. In practice, we start with a randomly chosen
a, and a sequence of fairly small numbers r,, like , = n. We then form the sequence
a; = a, az = aj' = a'', ag = a3’ = a""?, and inductively, a;y1 = a;’ = o™, We
then compute g; = (a; — 1, N). Noting that a; — 1|a;4+1 — 1 for every ¢, and so g;|g;+1 for
every i, we typically, compute the g.c.d.’s only occasionally (since we expect to get g; = 1
for awhile). This process will always eventually stop, since for any prime divisor p of N,
p — 1 will divide ry ---7,, =1-2---n for some n, so g, > 1. The first time this happens,
however, it might be that g,, = IV, and so the test fails; we then restart with a different a.
The typical amount of time it take for this method to find a factor is on the order of the
size of the smallest among the set of largest prime factors of p — 1, where p ranges among
all of the prime factors of N. The problem: this could be fairly large!

The elliptic curve method attempts to get around this problem. The basic idea behind the
method above is that we are attempting to express the identity element in Z; (the group
of units of Z,), as a power of some number a, where the power is a product of fairly small
numbers. [The fun part is that we are doing this without actually choosing p first!] The
problem is that we are not guaranteed a p where products of small numbers will work.
The ECM takes this problem and translates it into a framework where it is much more
likely to work, using elliptic curves mod p.

The basic idea is to take the machinery we have developed for computing on elliptic curves,
and do all of the calculations mod p, for some (unknown!) prime dividing N. In practice,
this really means we do the calculations mod N. The basic fact is that, using the formulas
for addition we have above (and really, it works in general), we can work out an addition
formula for points in what we choose to call C¢(Z,) . The formulas involve division, but
mod p, we simply carry these out by instead multiplying by the invers (which we find by
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the Euclidean algorithm). We still need to know that this form of addition on C¢(Z,) gives
us a group; but from the formulas, the needed properties can be verified directly (including
associativity!).

In the end, we need to treat the point at infinity on the same level as all of the others. This can
be dealt with by “projectivizing” our formulas: setting the points equal to x1/2%,y1/23),
(2/23,y2/73), we can compute x1/27,y1/27) + (x2/23,y2/23) = (w3/23,y3/23), giving
ourselves formulas for x3, y3, 23 that don’t involve division. The ideal point corresponds to
z3 =0 (and z3 = 0), when we use the standard point at infinity for the zero element.

To implement the ECM to find a factor of an integer N, we pick an elliptic curve C¢(Z,) by
choosing values for a and b, and a point A on the curve. [Usually this is done the other
way around; pick a point you want on the curve, such as A = (1, 1), and choose the values
of a and b accordingly.] C¢(Z,) is a group of some finite (but unknown) order; the idea is
that we expect that for some choices of a and b, it has order a product of small primes,
and so a calculation like the one in the Pollard (p — 1)-test will quickly succeed. But this
is where the fun starts!

The idea is to compute high multiples rq - - -7, A of a point; we do this as we dealt with high
powers long ago, by repeated doubling, and then adding together the necessary powers of 2
to get r1 -+ -ry,. Our calculations are supposed to be carried out mod p, but they can’t be;
we don’t know p. So instead we carry them out mod N (while pretending we are computing
in C¢(Zy)). The idea is that we hope to have r;-- -7, equal to a multiple of the order of
Cy(Zyp); this can, in fact, be any number between p +1 —2,/p and p + 1 + 2,/p. The idea
is that for some f, this will happen, and underbarif we have been doing this calculation
mod p, we would find that the x-coordinate of our multiple was 0. But we don’t know p.
But doind the calculation mod N as if we were doing them mod p, what we would find is
that our z-coordinate would be a multiple of p, so if r1 -+ r, A = (2, /22, yn/23), then we
would have (z,, N) > 1, and stand a chance of finding a factor of V.

The idea, then is to carry out lots of these additions for different choices of f, which would
have different orders of C¢(Z,), hoping to stumble across one where the order is a product
of small primes, and by choosing the r; all small, so that ry---7, is around the size we
expect the order to be, p (which we don’t know! so we aim for VN ), we expect to eventually
find an z,, with (z,, N) > 1, giving us (perhaps) a factor.



