

Math 856 Homework 1

Starred (*) problems to be handed in Thursday, September 7

(*) **1:** Show that a connected manifold M is *arcwise connected*, that is, for every pair of points $x, y \in M$ there is a *one-to-one* path $\gamma : [0, 1] \rightarrow M$ with $\gamma(0) = x, \gamma(1) = y$.

(There is a theorem, due to Hahn and Mazurkiewicz (circa 1914), which says that a Hausdorff space is path connected iff it is arcwise connected (which is kind of funny, since the term ‘‘Hausdorff’’ wasn’t really introduced until the 1920s?); but for manifolds you can give a much more elementary proof...)

2: Show that if $A, B \subseteq \mathbb{R}^2$ are closed subsets, the statement

$$\mathbb{R}^2 \setminus A \cong \mathbb{R}^2 \setminus B \Rightarrow A \cong B$$

is **false**. What about the converse statement? (N.B. That might be harder?)

(*) **3:** Given a collection of triangles (or 2-simplices, you are more comfortable with that terminology) $T_i, i = 1, \dots, 2r$, with edges e_{i1}, e_{i2}, e_{i3} , and a collection of $3r$ homeomorphisms $h_k : e_{i_k j_k} \rightarrow e_{i'_k j'_k}$ involving all $6r$ edges (as either domain or range), show (in a quasi-rigorous fashion?) that the quotient space obtained by gluing the 2-disks T_i together using the maps h_k is a 2-manifold. (There are basically three ‘‘kinds’’ of points to worry about. ‘‘Describe’’ locally Euclidean neighborhoods for each.)

(*) **4:** (Lee, p. 28, problem 1-4) If $0 \leq k \leq \min\{m, n\}$, show that the set $R_k \subseteq M(m \times n, \mathbb{R})$ of m -by- n matrices with rank $\geq k$ is an open subset of $M(m \times n, \mathbb{R}) \cong \mathbb{R}^{mn}$ (and therefore admits a smooth structure). (*Hint:* look at Lee’s linear algebra appendix...)

(*) **5.:** We say that two charts $\phi : U \rightarrow \mathbb{R}^n, \psi : V \rightarrow \mathbb{R}^n, U, V \subseteq M^n$ are C^∞ -related if $\psi \circ \phi^{-1} : \phi(U \cap V) \rightarrow \psi(U \cap V)$ and $\phi \circ \psi^{-1} : \psi(U \cap V) \rightarrow \phi(U \cap V)$ are both C^∞ . Show that the relation ‘‘is C^∞ -related to’’ is **not** an equivalence relation. (Hint: $M^n = \mathbb{R}$ will suffice for an example...)

(*) **6:** Show that \mathbb{R} has uncountably many distinct smooth structures. ((Perhaps) show first that it is enough to find uncountably many charts, with intersecting domains and ranges, no two of which are C^∞ -related to one another.)

7: Lee, page 28-29, problem 1-5. [It was too long to copy out.]

8: Show that a function $f : M^n \rightarrow N^m$ is $C^\infty \Leftrightarrow g \circ f : M^n \rightarrow \mathbb{R}$ is C^∞ for *every* C^∞ function $g : N^m \rightarrow \mathbb{R}$. (Hint: you might need to use the technology of bump functions found on p.55 of the text?)