Math 856 Homework 1

Starred (*) problems to be handed in Friday, September 11

(*) 1: Show that a connected manifold M is arcwise connected, that is, for every pair of points $x, y \in M$ there is a one-to-one path $\gamma : [0, 1] \to M$ with $\gamma(0) = x, \gamma(1) = y$.

(There is a theorem, due to Hahn and Mazurkiewicz (circa 1914), which says that a Hausdorff space is path connected iff it is arcwise connected (which is kind of funny, since the term "Hausdorff" wasn't really introduced until the 1920s?); but for manifolds you can give a much more elementary proof...)

2: Show that if $A, B \subseteq \mathbb{R}^2$ are closed subsets, the statement

" $\mathbb{R}^2 \setminus A \cong \mathbb{R}^2 \setminus B \Rightarrow A \cong B$ "

is false. What about the converse statement?

3 Show that every topological *n*-manifold has a countable basis consisting of open sets homeomorphic to \mathbb{R}^n . [Hint: start with any old countable basis....]

(*) 4: (Lee, p. 28, problem 1-4) If $0 \le k \le \min\{m, n\}$, show that the set $R_k \subseteq M(m \times n, \mathbb{R})$ of *m*-by-*n* matrices with rank $\ge k$ is an open subset of $M(m \times n, \mathbb{R}) \cong \mathbb{R}^{mn}$ (and therefore admits a smooth structure). (*Hint:* look at Lee's linear algebra appendix...)

(*) 5.: We say that two charts $\phi: U \to \mathbb{R}^n$, $\psi: V \to \mathbb{R}^n$, $U, V \subseteq M^n$ are <u>C[∞]-related</u> if $\psi \circ \phi^{-1}: \phi(U \cap V) \to \psi(U \cap V)$ and $\phi \circ \psi^{-1}: \psi(U \cap V) \to \phi(U \cap V)$ are both C[∞]. Show that the relation " is C[∞]-related to " is **not** an equivalence relation. (Hint: $M^n = \mathbb{R}$ will suffice for an example...)

6: Show that \mathbb{R} has uncountably many distinct smooth structures. ((Perhaps) show first that it is enough to find uncountably many charts, with intersecting domains and ranges, no two of which are C^{∞} -related to one another.)