Math 871 Exam 2 Topics, PART 1 (the point-set part)

Compactness. The topological property behind the Extreme Value Theorem

- Same idea: what would make EVT fail? $f: X \to \mathbb{R}$ (Think maximum.) Either f has no upper bound, or its image has a (least) upper bound that is not achieved. Either, taking inverse images, leads to a collection of nested open sets whose union is X, but none of them is X. This leads to:
- An open covering of a topological spac X is a collection of open sets \mathcal{U}_{α} whose union is X.
- (X, \mathcal{T}) is compact (cpct) if every open covering $\{\mathcal{U}_{\alpha}\}_{\alpha \in I}$ has a finite subcover(ing): a finite collection $J \subseteq I$ so that $\{\mathcal{U}_{\beta}\}_{\beta \in J}$ is also an open covering of X.

Compact subset $A \subseteq X : (A, \mathcal{T}_A)$ is a cpct space.

- Topologist's EVT: If $f : (X, \mathcal{T}) \to (\mathbb{R}, \text{usual})$ is cts and X is cpct, then there are $a, b \in X$ so that $f(a) \leq f(x) \leq f(b)$ for all $x \in X$.
- 'Real' Topologists EVT: if $f: (X\mathcal{T}) \to (Y, \mathcal{T}')$ is cts and X is cpct, then $f(X) \subseteq Y$ is a cpct subset of Y.

A closed subset of a compact set is compact.

A compact subset of a Hausdorff space is closed.

Consequence:

If $f: X \to Y$ is a cts bijection, and X is cpct while Y is Hausdorff, then f is a homeomorphism.

This is generally our favorite way, for example, to identify a space as a quotient of another space; $f: X \to Y$ cts and surjective, with X cpct and Y Hausdorff, then the quotient space X/\sim where $x \sim y$ iff f(x) = f(y), is homeomorphic to Y.

X and Y cpct, then $X \times Y$ is cpct.

- If X_{α} are compact for all α , then $\prod X_{\alpha}$ is compact, using the <u>product</u> topology. [This is a deep result...]
- A finite union of compact subsets is compact.
- Closed set formulation: take complements! A collecction A_{α} of subsets of X has the *finite* intersection property (FIP) if the intersection of any finite number of the A_{α} is non-empty.

X is cpct \Leftrightarrow for any collection $\{C_{\alpha}\}$ of <u>closed</u> subsets of X that has the FIP, we have $\bigcup_{\alpha} C_{\alpha} \neq \emptyset$.

This is often treated as a method for locating 'interesting' points: in a cpct space X if you can satisfy any finite number of a collection of 'closed' conditions (the pts satisfying each condition form a closed subset) then you can simultaneously satisfy <u>all</u> of them.

Alternate notions: In any cpct space, every infinite subset has a limit point.

 (X,\mathcal{T}) is *limit point compact* if every infinite subset of X has a limit point.

limit pt cpctness does <u>not</u> imply cpctness. Limit pt cpctness is not preserved under cts image. For *metrizable* spaces X (those whose open sets can be defined by a metric), X is cpctness $\Leftrightarrow X$ is limit pt cpct.

Nets:

- A sequence in X is a function $f : \mathbb{Z}_+ \to X$; $f(n) = x_n \in X$. A sequence converges $x_n \to x$ if for all $x \in U \in X$, $U \in \mathcal{T}$, there is an $N \in \mathbb{Z}_+$ so that $n \ge N \Rightarrow x_n \in U$.
- If $f: X \to Y$ is cts and $x_n \to x$ in X, then $f(x_n) \to f(x)$ in Y. But in like in analysis/ \mathbb{R}^n , the converse is not true; convergence of sequences is not good enough to imply continuity.
- A net in X is a collection of points indexed by a directed set (D, \geq) $[a \geq b \text{ and } b \geq c \text{ implies } a \geq c]$, where for all $a, b \in D$ there is a $d \in D$ so that $d \geq a, d \geq b$
- Model: all $U \in \mathcal{T}$ with $x \in U$, where $U \geq V$ means $V \subseteq U$ (reverse inclusion)
- A net $\{x_i\}_{i\in D}$ in X converges if there is an $x \in X$ so that $x \in U \in \mathcal{T}$ implies there is a $d \in D$ so that $i \geq d \Rightarrow x_i \in U$. [Write $x_i \to x$]
- If $f: X \to Y$ is cts and $x_i \to x$ in X, then $f(x_i)$ (is a net in Y, with the same index set and) converges to f(x).
- But the converse is now true: if the image under f of every convergent net is a convergent net, then f is continuous.
- Also: a space X is cpct \Leftrightarrow Every net in X has a convergent subnet [a subnet must be cofinal: it is defined by a subset $E \subseteq D$ so that for all $d \in D$ there is some $e \in E$ with $e \ge d$.] The corresponding statement for sequences/subsequences is false (but they do characterize cpctness for metrizabe spaces).

Countability and separation properties.

Idea: other useful properties that \mathbb{R} has that we might like (X, \mathcal{T}) to have.

- (X,\mathcal{T}) is separable if there is a countable subset $A \subseteq X$ with A = X [A is dense in X].
- (X,\mathcal{T}) is second countable if $\mathcal{T} = \mathcal{T}(\mathcal{B})$ for some countable basis $\mathcal{B} \subseteq \mathcal{T}$.
- (X, \mathcal{T}) is first countable if for every $x \in X$ there are $\{U_n\}_{n \in \mathbb{Z}_+} \subseteq \mathcal{T}$ so that $x \in U \in \mathcal{T}$ implies $x \in U_n \subseteq U$ for some n. [Each point has a countable neighborhood basis.]

 (X, \mathcal{T}) metrizable implies first ctble.

 (X,\mathcal{T}) second ctble $\Rightarrow (X,\mathcal{T})$ separable, (X,\mathcal{T}) first ctble.

In general, separable and first ctble do <u>not</u> imply second ctble.

Subspace of first ctble is first ctble; subspace of second ctble is second ctble.

Separation properties: T_1 (points are closed) and T_2 = Hausdorff we have met already.

- A space (X, \mathcal{T}) is T_3 if for every $C \subseteq X$ closed and $x \in X$ with $x \notin C$, there are $U, V \in \mathcal{T}$ so that $x \in U, C \subseteq V$, and $U \cap V = \emptyset$.
- A space (X, \mathcal{T}) is T_4 if for every $C, D \subseteq X$ closed with $C \cap D = \emptyset$, there are $U, V \in \mathcal{T}$ so that $C \subseteq U, D \subseteq V$, and $U \cap V = \emptyset$.
- (X, \mathcal{T}) is regular if it is T_1 and T_3 ; (X, \mathcal{T}) is normal if it is T_1 and T_4 .

normal \Rightarrow regular \Rightarrow Hausdorff \Rightarrow T_1

- (X, \mathcal{T}) metrizable implies that X is normal.
- (X,\mathcal{T}) compact and Hausdorff implies that (X,\mathcal{T}) is normal.
- (X,\mathcal{T}) regular and second ctble implies that (X,\mathcal{T}) is normal.

Alternate forms:

 (X,\mathcal{T}) is regular $\Leftrightarrow X$ is T_1 and whenever $x \in U \in \mathcal{T}$, there is a $V \in \mathcal{T}$ with $x \in V \subseteq \overline{V} \subseteq U$.

- (X, \mathcal{T}) is normal $\Leftrightarrow X$ is T_1 and whenever $C \subseteq U \in \mathcal{T}$ with C closed, there is a $V \in \mathcal{T}$ with $C \subseteq V \subseteq \overline{V} \subseteq U$.
- The cartesian product of regular spaces is regular; this is <u>not</u> true for normal spaces (and normality).
- (X, \mathcal{T}) is *metrizable*, then X is normal and first countable; these are necessary. What is <u>sufficient</u>?
- Urysohn Metrization Theorem: If (X, \mathcal{T}) regular and second countable, then $[(X, \mathcal{T})$ is normal and (X, \mathcal{T}) is metrizable.
- The idea: build an embedding $X \hookrightarrow \prod_{n \in \mathbb{Z}_+} \mathbb{R}$, so X is a subspace of a metrizable space, hence metrizable. Key ingredient:
- Urysohn's Lemma: If (X, \mathcal{T}) is normal then for $A, B \subseteq X$ closed with $A \cap B = \emptyset$, there is a cts $f: X \to [0, 1]$ so that $f|_A = 0$ and $f|_B = 1$.
- So second ctbility, in addition to normality, is sufficient; but there are non-second-countable metric spaces (uncountable set, discrete topology!).
- Smirnov metrizability: (X, \mathcal{T}) is metrizable $\Leftrightarrow X$ is Hausdorff, paracompact, and locally metrizable.
- Nagata-Smirnov metrizability: (X, \mathcal{T}) is metrizable $\Leftrightarrow X$ is regular and has a σ -locally-finite basis for the topology.
- Paracompact = every open covering has a locally finite refinement. Refinement = an open covering each of which is a subset of one of the original covering. Locally finite = every point as a neighborhood meeting only finitely many of the sets. σ -locally-finite = is a countable union of locally finite collections.
- Local properties: nearly every one of the properties we have studied has a "local" version (essentially, it hold for some open subset of a point).
- Locally connected: Given $x \in U \in \mathcal{T}$, there is a $V \in \mathcal{T}$ with $x \in V \subseteq U$ and V is connected.
- Locally path connected: Given $x \in U \in \mathcal{T}$, there is a $V \in \mathcal{T}$ with $x \in V \subseteq U$ and V is path connected.

Locally compact: Given $x \in X$, there is a $U \in \mathcal{T}$ and $C \subseteq X$ compact, so that $x \in U \subseteq C$.

All of these are topological properties, and they typically allow us to leverage the useful properties that follow from connectedness/path connectedness/compactness to more general settings. [Think: \mathbb{R} is not cpct, but it is locally cpct.]

Homotopy Theory.