
Math 871 Exam 2 Topics Part 2: The homotopy part

Homotopy Theory.

Motivation: understand all continuous functions f : X → Y , since it is functions to/from
‘model’ spaces that allow us to explore a space.

E.g., paths = γ : I = [0, 1] → X . How many ‘essentially distinct’ paths are there from (−1, 0)
to (1, 0) in R2 \ {(0, 0)} ? What is inessetial? Deformations.

Two maps f, g : X → Y are homotopic if one can be deformed to the other (through continuous
maps). Formally, there is a cts map H : X × I → Y so that H(x, 0) = f(x) and H(x, 1) =
g(x) for all x ∈ X . We write: f ≃ g (via H).

Note: γx : t 7→ H(x, t) is a cts path in Y , for every x.

Notation: f : (X,A) → (Y,B) means A ⊆ X , B ⊆ Y and f(A) ⊆ B.

Two maps f, g : (X,A) → (Y,B) are homotopic rel A if H : X × I → Y also satisfies
H(a, t) = f(a) = g(a) for all a ∈ A, t ∈ I. [So, in part, f |A = g|A .]

Basic example: any two maps f, g : X → Rn are homotopic, via a straight-line homotopy:
H(x, t) = (1− t)f(x) + tg(x).

Homotopy is an equivalence relation: f ≃ f (via H(x, t) = f(x)), f ≃ g implies g ≃ f
(via K(x, t) = H(x, 1 − t)); f ≃ g and g ≃ h implies f ≃ h (via doubling the speed;
M(x, t) = H(x, 2t) for t ≤ 1/2 and = K(x, 2t− 1) for t ≥ 1/2).

This allows us to introduce a new notion of equivalence of topological spaces. X and Y are
homotopy equivalent [we write X ≃ Y ] if there are f : X → Y and g : Y → X so that
g ◦ f ≃ IdX and f ◦ g ≃ IdY .

Homotopy equivalence is an equivalence relation! Note: a homeomorphism is a homotopy
equivalence! [g ◦ f = IdX ≃ IdX ].

The homotopy viewpoint.

The basic idea is that homotopy equivalence (= ‘h.e.’) allows us to move past/around ‘unim-
portant’ differences in spaces. For example, R2 \{(0, 0)} ∼= S1×R ≃ S1×I ≃ S1 means that
maps into R2 \ {(0, 0)} ‘behave like’ maps into S1 (which we can more readily understand?).

Algebraic topology seeks to understand topological spaces through algebraic invariants. An
algebraic invariant assigns to each space X an algebraic object A(X) and to each map
f : X → Y a homomorphism A(f) : A(X) → A(Y ). If X and Y are the ‘same’, then A(X)
and A(X) will be isomorphic. Usually, ‘same’ means homeomorphic, but we will often find
that homotopy equivalent spaces will same the same invariants, due the the methods that
we use to build them.

This can be both bad and good, ‘homotopy invariance’ of a invariant means that it will not
be able to distinguish h.e. spaces that are not homeomorphic. But it also means that
when computing an algebraic invariant, we can replace a space X with Y ≃ Y , which may
streamline a computation.

A retraction of X onto A ⊆ X is a map r : X → A so that r(a) = a for all a ∈ A. [A is
a retract of X ]. A is a deformation retract of X if ι ◦ r : X → A → X is ≃ IdX [r is a
deformation retraction]. and r is a strong deformation retraction if ι ◦ r : (X,A) → (X,A)
is ≃ IdX rel A (i.e., H(a, t) = a for all a ∈ A). We write X ց A.
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For example, r : Rn ց {~0}, since ι ◦ r ≃ IdRn via a straight-line homotopy
H(x, t) = (1− t)ι ◦ r(~x) + tIdRn(~x) = t~x .

A space X is contractible if X ≃ {∗}.

Mapping cylinders: If f : X → Y , then Mf = X × I
∐

Y/ ∼, where (x, 1) ∼ f(x). [Idea: we
glue X × {1} to Y using f .] Then since X × I ց X × {1}, we have Mf ց Y .

Fact: f : X → Y is a homotopy equivalence ⇔ Mf ց X × {0}. This means that X ≃ Y ⇔
there is a space Z with X, Y ⊆ Z and Z ց X , Z ց Y .

The Fundamental Group.

Idea: find the essentially distinct paths between points in X . How? Turn this into a group!
How? The concatenation γ ∗ η of two paths is a path. But: only if the first ends where the
second begins (so that, by the Pasting Lemma, the resulting map is cts). So we either have
a partial multiplication (= groupoid!), or we focus on loops γ : (I, ∂I) → (X, x0) based at a
fixed point x0 9we’ll do the second).

Elements of the fundamental group π1(X, x0) ‘are’ loops; the inverse will be the reverse γ(t) =
γ(1 − t), since γ ∗ γ ≃ cx0

, and the identity element will be the constant map cx0
. But! to

make γ ∗ γ equal cx0
, we need to work with homotopy classes of loops. So elements really

are equivalence classes [γ] of loops, under ≃ rel ∂I.

Then by building homotopies (mostly working on the domain I, i.e., building K = γ ◦ H :
I× I → I → X) we can see that [γ][η] = [γ ∗η] is well defined, [γ]−1 = [γ] is the inverse, and
([γ][η])[ω] = [γ]([η][ω]), so under ∗, π1(X, x0) is a group. [Most of the proofs that needed
maps (like (γ ∗ η) ∗ω and γ ∗ (η ∗ω) (which are the same concatenations, except at 4,4, and
2 times speed, versus 2,4, and 4 times speed) are homotopic can be given ‘picture’ proofs, in
addition to explicit analytic formulas.

Given a map f : (X, x0) → (Y, y0), we get an induced map f∗ : π1(X, x0) → π1(Y, y0) via
f∗[γ] = [f ◦ γ]. This is well-defined, and a homomorphism.

Basic computations: π1({∗}, ∗) = {1}, as are π1(R
n,~0) and π1([0, 1]

n, x0) for any x0. More
generally, any contractible space has trivial fundamental group.

Since (f ◦ g)∗ = f∗ ◦ g∗, and (IdX)∗ = Idπ1(X,x0), then X ∼= Y via f implies f∗ : π1(X, x0) →
π1(Y, f(x0)) is an isomorphism.

More generally, if f : X → Y is a h.e., then f∗ is an isomorphism, but, because of basepoint
issues, the inverse of f∗ is generally not g∗ for g a homotopy inverse. Th is is because under
a homotopy H : X × I → X of g ◦ f to Id, the basepoint x0 traces out a path η from
g(f(x0)) = x1 to x0, and [g ◦ f ◦ γ] = [η ∗ γ ∗ η]. This map [γ] 7→ [η ∗ γ ∗ η] from π1(X, x0)
to π1(X, x1) is a change of basepoint isomorphism, which we might call η∗ ? The fact that
homotopies can drag basepoints around will be a theme we will return to many times moving
forward.

If X is path connected, then, up to isomorphism, π1(X, x0) is independent of x0 (we can
always find a path to effect an isomorphism), and so we will often write pi1(X), when X is
path-connected, when we only care about the abstract group.

π1(S
1, (1, 0)) ∼= Z. The main ingredients:
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Writing S1 ⊆ C and γn(t) = e2πint is the loop traversing S1 n times counterclockwise at
uniform speed, then (1) every loop γ at (1, 0) is ≃ γn for some n.

We define w : π1(S
1, (1, 0)) → Z by w[γ] = n if [γ] = [γn]. This is well-defined: (2) if γn ≃ γm

rel endpoints, then n = m.

w is a bijective homomorphism!

The proof of (1) amounted to making a general γ progreessively nicer, via homotopy. This
involved

Lebesgue Number Theorem: If (X, d) is a compact metric space and {Uα} is an open covering
of X , then there is an ǫ > 0 so that for every x ∈ X there is an α = α(x) so that we have
Nd(x, ǫ) ⊆ Uα.

Then by covering S1 by the ‘top 2/3rds’ and ‘bottom 2/3rds’ subsets and taking inverse images
under γ : (I, ∂I) → (S1, (1, 0)), the LNT will partition I into finitely many intervals each
mapping into top or bottom. Creating subpaths by restricting to each subinterval, and
inserting ‘hairs’ to points (1, 0), (−1, 0) in the intersection of top and bottom, we can then
homotope the subpaths to standard paths t 7→ e±2πit. Cancelling pairs the reverse direction
give us our ‘normal forms’ γn.

The proof of (2) amounted to using an ‘extra’ coordinate (cos t, sin t, t) to keep track of how
many times we wind around the circle. To do this correctly, we really use the map p : t 7→
(cos t, sin t, t) 7→ (cos t, sin t) and then lift paths γ : I → S1 to paths γ̃ : I → R with γ = p◦ γ̃.
This agin uses the LNT to partition I into subintervals mapping into top and bottom, and
the fact that the inverse image of top and bottom are a disjoint union of open sets mapped
homeomorphically under p to the top and bottom. [This is the evenly covered property.]

More than this, homotopies H : I × I → S1 can also be lifted; this enables us to show that
loops homotopic rel endpoints, when lifted both starting at the same point, will end at the
same point. Since γn when lifted starting at 0 will end at n, the result follows.

Applications. This single computation has many applications! First, there is no retraction
r : D2 → ∂D2. This is because if there were one, then r∗ : π1(D

2, (1, 0)) → π1(S
1, (1, 0))

would be a surjection, which is impossible.

This in turn gives the Brouwer Fixed Point Theorem: Every countinuous map f : D2 → D2

has a fixed point. For if not, we can then manufacture a retraction r : D2 → ∂D2.

Finally, we can prove the Fundamental Theorem of Algebra: Every non-constant polynomial p
has a complex root. For if not, then for large enough N the map

t 7→ f(Ne2πit) 7→ f(Ne2πit)/||f(Ne2πit)||
from I to S1 is homotopic to both c(1,0) = γ0 and γn for n = the degree of f , a contradiction.
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