Math 871 Problem Set 1

Starred (*) problems are due Thursday, Sept. 11.

- 6. For a set X, and (fixed) $a \in X$, the <u>excluded point topology</u> on X is the collection of subsets $\mathcal{T}_a = \{ \mathcal{U} \subseteq X : a \notin \mathcal{U} \} \cup \{X \}.$ Show that \mathcal{T}_a is a topology on X.
- (*) 7. Show that the set $\mathcal{T} = \{(a, \infty) : a \in \mathbb{R}\} \cup \{(a, \infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$ of subsets of $\mathbb R$ is a topology on $\mathbb R$.

[Note that T can be thought of as the sets $\mathcal{U} \subseteq \mathbb{R}$ so that whenever $a \in \mathcal{U}$ and $b \geq a$, then $b \in \mathcal{U}.$

8. (a) Show that if $f : \mathbb{R} \to \mathbb{R}$ is an increasing function $[a \geq b \Rightarrow f(a) \geq f(b)]$, then, as a function from $(\mathbb{R}, \mathcal{T})$ to $(\mathbb{R}, \mathcal{T})$, f is continuous.

(b) Show, conversely, that if $f : (\mathbb{R}, \mathcal{T}) \to (\mathbb{R}, \mathcal{T})$ is continuous, then f is increasing! [Consequently, this topology captures increasing functions precisely as its continuous functions...]

[Hint: suppose f isn't increasing: show it is <u>not</u> continuous.]

- (*) 9. [Munkres, p.83, $\#13.3$] (a) Show that for any set X, the sets $\{\mathcal{U} \subseteq X : X \setminus \mathcal{U}$ is countable $\} \cup \{\emptyset\}$ form a topology on X. (b) Do the sets $\{\mathcal{U} \subseteq X : X \setminus \mathcal{U} \text{ is infinite}\}\cup \{\emptyset\}$ always form a topology on X? Explain why or why not.
- 10. [Munkres, p.83, $\#13.4(a)$] If \mathcal{T}_{α} are all topologies on the same set X, show that $\bigcap_{\alpha}\mathcal{T}_{\alpha}$ (the intersection of all of the topologies) is also a topology on X. Is $\bigcup_{\alpha} \mathcal{T}_{\alpha}$ (their union) a topology on X ?
- (*) 11. With the topology $\mathcal T$ on $\mathbb R$ from problem #6, and $\mathcal T'$ the "usual" topology on $\mathbb R$ (open sets are unions of neighborhoods), show that every continuous function $f: (\mathbb{R}, \mathcal{T}) \to (\mathbb{R}, \mathcal{T}')$ must be constant. [Hint: Suppose not! Show that $f \text{ can't be continuous.}$]
- 12. With the topologies from problem $#11$, show that there do exist continuous functions $f: (\mathbb{R}, \mathcal{T}') \to (\mathbb{R}, \mathcal{T})$ which are <u>not</u> constant. [How could $f^{-1}([a,\infty))$ and $f^{-1}((a,\infty))$ both be open?]