Math 871 Problem Set 4

Starred (*) problems are due Thursday, Sept. 25.

21. Theorem 15.1 of the text shows that if (X, \mathcal{T}) and Y, \mathcal{T}' are topological spaces with bases $\mathcal{T} = \mathcal{T}(\mathcal{B})$ and $\mathcal{T}' = \mathcal{T}(\mathcal{B}')$, then $\mathcal{B} \times \mathcal{B}' = \{B \times B' : B \in \mathcal{B}, B' \in \mathcal{B}'\}$ is a basis for the product topology on $X \times Y$. [You should prove this for yourself!]

Show, by contrast, that, for an infinite Cartesian product, one natural generalization of this is (typically) <u>false</u>; if $\mathcal{T}_{\alpha} = \mathcal{T}(\mathcal{B}_{\alpha})$ for all α , the sets

$$
\prod_{\alpha} (\mathcal{B}_{\alpha}) = \{ \prod_{\alpha} B_{\alpha} \ : \ B_{\alpha} \in \mathcal{B}_{\alpha} \text{ for all } \alpha \}
$$

is a basis, but for the <u>box</u> topology on $\prod_{\alpha} X_{\alpha}$, not (typically) the product topology. What would the 'correct' basis be, to generate the product topology?

- (*) 22. [Munkres, p.112, Problem #10] Show that if A, B, X, Y are topological spaces, and $f : A \to X$ and $g : B \to Y$ are both continuous functions, then the function $h : A \times B \to X \times Y$, given by $h(a, b) = (f(a), g(b))$, is also continuous (using the product topologies on domain and codomain).
- (*) 23. [Munkres, p.91, Problem #1] Show that if (X, \mathcal{T}) is a topological space, $A \subseteq X$ is given the subspace topology \mathcal{T}_A it inherits from X, and $B \subseteq A$, then the subspace topology $\mathcal{T}_{B,A}$ that B inherits from A is the same as the subspace topology $\mathcal{T}_{B,X}$ that it inherits as a subset of X.
- 24. Show that if $\mathcal{T} \subseteq \mathcal{T}'$ are topologies on the set X, and $A \subseteq X$, then the subspace topology on A induced by $\mathcal T$ is coarser than the subspace topology induced by $\mathcal T'$. Find examples of topologies $\mathcal T \subsetneq \mathcal T'$ on R so that the topologies that they induce on $[0, 1] \subseteq \mathbb{R}$ are the same.
- 25. [Munkres, p.118m, Problem #2] Show that if $(X_\alpha, \mathcal{T}_\alpha)$ are topological spaces and $A_\alpha \subseteq X_\alpha$ are given the subspace topologies for each α , and $\prod_{\alpha} X_{\alpha}$ is given the product topology \mathcal{T} , then the subspace topology on $\prod_{\alpha} A_{\alpha}$ induced by $\mathcal T$ is the product topology on $\prod_{\alpha} A_{\alpha}$. Is the analogous statement true if we use the box topologies?
- (*) 26. Giving R the usual (metric) topology, show that if $f : (X, \mathcal{T}) \to \mathbb{R}$ and $g : (X, \mathcal{T}) \to \mathbb{R}$ are both continuous, then the functions $m, M : (X, \mathcal{T}) \to \mathbb{R}$, given by

$$
m(x) = \min\{f(x), g(x)\}\qquad M(x) = \max\{f(x), g(x)\}\
$$

are also both continuous.

[Hint: using the subbasis $S = \{(a, \infty) : a \in \mathbb{R}\}\cup \{(-\infty, a) : a \in \mathbb{R}\}\)$ cuts down on your work...]

27. (a) Show that $\{(x,y)\in\mathbb{R}^2 : x+y>a\} = \bigcup_c (c,\infty) \times (a-c,\infty)$ and $\{(x,y)\in\mathbb{R}^2 : x+y$ $\bigcup_{c}(-\infty, c) \times (-\infty, a-c)$ (so both are open sets).

(b) Show that the function $A : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ (with the usual (product) toplogies) given by $A(x, y) = x + y$ is continuous. [Part (a) helps... see previous hint!]

(c) Use a previous problem (!) to conclude that if $f, g : (X, \mathcal{T}) \to (\mathbb{R}, \text{usual})$ are both continuous, then the function $h : (X, \mathcal{T}) \to (\mathbb{R}$, usual) given by $h(x) = f(x) + g(x)$ is also continuous.