Starred (*) problems are due Thursday, October 2.

- 28. [Munkres, p.101, #1] Show that if $A, B, A_{\alpha} \subseteq X$, where (X, \mathcal{T}) is a topological space, then
 - (a) If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$
- (*) (b) $\overline{A} \cup \overline{B} = \overline{A \cup B}$
- (*) (c) $\cup_{\alpha} \overline{A_{\alpha}} \subseteq \overline{\cup_{\alpha} A_{\alpha}}$; in general, equality does not hold.
- (*) 29. [Munkres, p.101, #8(b), sort of] If $A, B \subseteq X$, where (X, \mathcal{T}) is a topological space, then what is the relationship between $\overline{A} \cap \overline{B}$ and $\overline{A \cap B}$? What if one of the sets A, B is closed in X?
- 30. Show that if $A \subseteq X$ and X has two topologies $\mathcal{T} \subseteq \mathcal{T}'$, then if $x \in X$ is a limit point of A w.r.t. \mathcal{T}' , then it is also a limit point of A w.r.t. \mathcal{T} .
- 31. We showed in class that if $A_i \subseteq X_i$ for all $i \in I$, then

$$\overline{\prod_i A_i} = \prod_i \overline{A_i} \subseteq \prod_i X_i$$

when we put the product topology on $\prod_i X_i$. Show that the same is <u>also</u> true if we instead use the <u>box</u> topology on $\prod_i X_i$.

- 32. Find the closure of the set $A = \{1 \frac{1}{n} : n \in \mathbb{Z}_+\} \subseteq \mathbb{R}$, when \mathbb{R} has the
 - (a) finite complement topology
 - (b) infinite (open) ray to the right topology
 - (c) discrete topology
 - (d) lower limit topology, generated by the basis $\mathcal{B} = \{[a, b) : a, b \in \mathbb{R}\}$
 - (e) countable complement topology.
- (*) 33. (a) If $f, g: (X, \mathcal{T}) \to (\mathbb{R}, \text{usual})$ are both continuous, show that $\{x \in X : f(x) \ge g(x)\}$ is a closed subset of X. [Note that the other set, $\{x \in X : g(x) \ge f(x)\}$, is also then closed...]

[Hint: think complements. Note that a < b is the same as a < c < b for some (constant) c ...]

(*) (b) (The "other" proof) Use (a) and the Pasting Lemma to show that under the same hypotheses the functions

 $m(x) = \min\{f(x), g(x)\}$ and $M(x) = \max\{f(x), g(x)\}$

are (still!) both continuous.

34. Theorem 17.5 in Munkres shows that if $\mathcal{T} = \mathcal{T}(\mathcal{B})$ is a topology on X generated by the basis \mathcal{B} and $A \subseteq X$, then $x \in \overline{A}$ precisely when every element of \mathcal{B} that contains x meets A. Show, on the other hand, that no corresponding result holds for subbases \mathcal{S} . That is, we can have $A \subseteq X$ and an $x \in X$ so that every element of \mathcal{S} that contains x meets A, but $x \notin \overline{A}$.

[Our favorite subbasis for the usual topology on \mathbb{R} works, or you can get more inventive!]