Math 871 Problem Set 6

Starred (*) problems are due Thursday, October 9.

(*) 35. [Munkres, p.118, #8] For $i \in \mathbb{Z}_+$ let $a_i, b_i \in \mathbb{R}$ with $a_i > 0$ for all i, and let $f: \prod_i \mathbb{R} \to \prod_i \mathbb{R}$ be given by $f((x_i)_{i \in \mathbb{Z}_+}) = (a_i x_i + b_i)_{i \in \mathbb{Z}_+}$

Show that f is a homeomorphism, when $\prod_i \mathbb{R}$ is given the product topology (on both the domain and codomain). What happens when $\prod_i \mathbb{R}$ has the <u>box</u> topology?

36. Find an example of subspaces $A, B \subseteq \mathbb{R}$ (giving \mathbb{R} the usual topology) for which there is a continuous bijection

$$f: A \to B$$

whose inverse is **not** continuous.

- (*) 37. Show that if X is a space with topology generated by a basis \mathcal{B} , then X is Hausdorff if and only if for every $x, y \in X$ with $x \neq y$, there are $B, B' \in \mathcal{B}$ with $x \in B, y \in B'$ and $B \cap B' = \emptyset$.
- 38. [Munkres, p.101, #11] Show that if $(X_{\alpha}, \mathcal{T}_{\alpha})$ are Hausdorff for all α , then $\prod_{\alpha} X_{\alpha}$ is Hausdorff for <u>both</u> the product and box topologies.
- 39. Show that if (X, \mathcal{T}) and (X, \mathcal{T}') are topologies on X, with (X, \mathcal{T}) Hausdorff, and $\mathcal{T} \subseteq \mathcal{T}'$, then (X, \mathcal{T}') is Hausdorff.
- (*) 40. Show that if $f, g: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ are both continuous, and (Y, \mathcal{T}') is Hausdorff, then $C = \{x \in X : f(x) = g(x)\}$

is a closed subset of X.

[Show that the complement is open....]

41. [restatement of Munkres, p.112, #13] Show that if $f, g: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ are both continuous, $A \subseteq X$ is a <u>dense</u> subset of $X, (Y, \mathcal{T}')$ is Hausdorff, and $f|_A = g|_A$, then f = g.

[To paraphrase, a continuous function to a Hausdroff space is uniquely determined by its values on a dense subset.]

[Hint: Problem #40 (!)]