Starred (*) problems are due Thursday, October 16.

- 42. Show that if $h: (X\mathcal{T}) \to (Y, \mathcal{T}')$ is a homeomorphism, $A \subseteq X$, and $h(A) = B \subseteq Y$, then $h|_A: (A, \mathcal{T}_A) \to (B, \mathcal{T}'_B)$ is also a homeomorphism.
- 43. [Munkres, p.144, Problem #2]
- (*) (a) Show that if $p: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is continuous, and there is a continuous map $f: (Y, \mathcal{T}') \to (X, \mathcal{T})$ with $p \circ f = Id_Y$, then p is a quotient map.
- (*) (b) For $A \subseteq X$, a retraction of X onto A is a continuous map $r: X \to A$ with $r|_A = Id_A$. Show that a retraction is a quotient map.
- 44. [Munkres, p.152, Problem #1] Show that if $\mathcal{T} \subseteq \mathcal{T}'$ are topologies on X and (X, \mathcal{T}') is connected, then so is (X, \mathcal{T}) .
- 45. Find an example of a topological space (X, \mathcal{T}) and $A \subseteq X$ so that A is connected, but int(A) isn't. (Note: A result from class says that this čan't be done in \mathbb{R} . But it can be done in \mathbb{R}^2 ... or elsewhere!)
- (*) 46. [Munkres, p.152, Problem #9] Suppose that $A \subsetneq X$ and $B \subsetneq Y$ are proper subsets of X and Y. Show that if $(X\mathcal{T})$ and (Y,\mathcal{T}') are both connected, then $(X \times Y) \setminus (A \times B)$ is a connected subset of $X \times Y$.
- 47. Give an example of a space X and subset $A \subseteq X$ where int(A) and cl(A) are both connected, but A is not.
- (*) 48. [Munkres, p.152, Problem #11] Suppose that $p: X \to Y$ is a quotient map, Y is connected, and for every $y \in Y$ the set $p^{-1}(\{y\})$ is a connected subset of X. Show that X is connected.

[Hint: start with a potential separation for X; show that their images would separate Y.]