Math 871 Problem Set 8

Starred (*) problems are due Thursday, November 6.

- 49. Show that if $X_{\alpha}, \alpha \in I$ are all path-connected, then so is $\prod_{\alpha \in I} X_{\alpha}$, if we use the product topology.
- (*) 50. Show that if $A_{\alpha} \subseteq X, \alpha \in I$ are all path-connected, and for some $\alpha_0 \in I$ we have $A_{\alpha} \cap A_{\alpha_0} \neq \emptyset$ for all $\alpha \in I$, then $\bigcup_{\alpha \in I} A_{\alpha}$ is path-connected.
- 51. Show that if \mathcal{T} and \mathcal{T}' are topolgies on X, (X, \mathcal{T}') is compact, and $\mathcal{T} \subseteq \mathcal{T}'$, then (X, \mathcal{T}) is compact.
- 52. Give an example of a space (X, \mathcal{T}) and subsets $A, B \subseteq X$ so that A and B are compact but $A \cap B$ is not.

(Note: your space X cannot be Hausdorff....)

(*) 53. Let $X = \mathbb{R}$ with the infinite ray topology $\mathcal{T} = \{(a, \infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$

Show that $A = \{0\}$ is a compact subset of X, but its closure \overline{A} isn't.

- 54. [Munkres, p.171, Problem #5] Show that if (X, \mathcal{T}) is a Hausdorff space and $A, B \subseteq X$ are disjoint compact subsets of X, then there are subsets $U, V \in \mathcal{T}$ so that $A \subseteq U$, $B \subseteq V$, and $U \cap V = \emptyset$.
- 55. [Munkres, p.171, Problem #6] Show that if $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is continuous and surjective, (X, \mathcal{T}) is compact, and (Y, \mathcal{T}') is Hausdorff, then f is a closed map (and therefore a quotient map).
- (*) 56. Let (X, \mathcal{T}) be a Hausdorff space and let $\mathcal{T}' = \{U \subseteq X : X \setminus U \subseteq X \text{ is compact}\} \cup \{\emptyset\}.$

Show that \mathcal{T}' is a topology on X, and is coarser than \mathcal{T} . Show that, in general, the two topologies need not be equal. Do (X, \mathcal{T}) and (X, \mathcal{T}') have the same compact subsets? [Note that problem #51 says something about this...]

[This problem (except for the last part) was lifted from an old qualifying exam...]