Math 871 Problem Set 9

Starred (*) problems are due Thursday, November 13.

- (*) 57. Show that if X is limit point compact, and A is a closed subset of X, then A is limit point compact.
- 58. [Munkres, p.194, #12] Show that if $f : (X mt) \to (Y, \mathcal{T}')$ is continuous and *open* and X is first countable, then $(f(X), \mathcal{T}'_{f(X)})$ is first countable.
- (*) 59. [Munkres, p.194, #2]Show that if (X, \mathcal{T}) is second countable (with countable basis \mathcal{B}), then for every basis \mathcal{C} with $\mathcal{T}(\mathcal{C}) = \mathcal{T}$ there is a *countable* basis $\mathcal{C}' \subseteq \mathcal{C}$ with $\mathcal{T}(\mathcal{C}') = \mathcal{T}$.

[Hint: look at all $C \in C$ with $B_1 \subseteq C \subseteq B_2$ for some $B_1, B_2 \in \mathcal{B}$, and pick some of those....]

- 60. [Munkres, p.194, #5(a),#6] Show that if (X, \mathcal{T}) is a *metrizable*, separable space, then X is second countable. Conclude that \mathbb{R} with the lower limit topology is <u>not</u> metrizable.
- 61. A space (X, \mathcal{T}) is called *Lindelöf* if every open covering $\{U_{\alpha}\}_{\alpha \in I} \subseteq \mathcal{T}$ has a *countable* subcover(ing). Show that a closed subset of a Lindelöf space is Lindelöf.
- 62. [Munkres, p.205, #1] Show that a closed subset $A \subseteq X$ of a normal (= T_1 plus T_4) space (X, \mathcal{T}) is normal.
- (*) 63. Show by example that if $\mathcal{T}' \subseteq \mathcal{T}$ are topologies on X and (X, \mathcal{T}) is regular $(=T_3 \text{ plus } T_1)$, we cannot conclude that (X, \mathcal{T}') is regular, even if it is T_1 . Conclude that the continuous image of a regular space need not be regular. [Cheap route: think discrete topology...]
- 64. [Munkres, p.205, #2] Show that if $(X_{\alpha}, \mathcal{T}_{\alpha})$ are <u>non-empty</u> (!) spaces and $\prod_{\alpha} X_{\alpha}$ is normal (in the product topology), then each X_{α} is normal. [Remember, though, the converse is false!]