Math 871 Problem Set 3

Starred (*) problems are due Thursday, Sept. 15.

(*) 16. [A useful openness test.] If (X, \mathcal{T}) is a topological space, and $A \subseteq X$, show that $A \in \mathcal{T}$ if and only if

for all $x \in A$, there is a $U \in \mathcal{T}$ so that $x \in U \subseteq A$

- 17. Show that if $f, g : X \to Y$ are two functions from the topological space (X, \mathcal{T}) to Y, then the finest topology on Y which makes both functions continuous is the intersection of the finest topologies making each function alone continuous.
- 18. Show that if \mathcal{B} and \mathcal{B}' are both bases for topologies on X, then the set

 $\mathcal{B}'' = \{ B \cap B' : B \in \mathcal{B} \text{ and } B' \in \mathcal{B}' \}$

is also a basis for a topology on X , and that the topology it generates is the coarsest topology on X containing both $\mathcal B$ and $\mathcal B'$.

- (*) 19. [Munkres, p.83, Problem #5] Show that if \mathcal{B} is a basis for a topology on X, then $\mathcal{T}(\mathcal{B})$ is the intersection of all topologies that contain \mathcal{B} . Show that the analogous statement is true for the topology generated by a subbasis.
- 20. Show that, for any set X, the set

 $\mathcal{B} = \left\{ B \subseteq X : X \setminus B \text{ is infinite } \right\} \cup \left\{ X \right\}$

is a basis for a topology on X. What (familiar!) topolog(ies) does it generate?

21. [Munkres, p.83, Problem #8] (a) Show that the collection $\mathcal{B} = \{(a, b) : a, b \in \mathbb{Q}\}$ is a basis, which generates the 'usual' topology on \mathbb{R} .

(b) Show, by contrast, that the collection $\mathcal{B}' = \{[a,b) : a, b \in \mathbb{Q}\}$ is a basis, but the topology it generates is strictly coarser than the 'lower limit' topology \mathcal{T}_{ℓ} on \mathbb{R} .

- (*) 22. Show that $\mathcal{B} = \{(a, \infty) \times (b, \infty) : a, b \in \mathbb{R}\}$ is a basis for a topology \mathcal{T} on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, which is coarser than the usual Euclidean topology on \mathbb{R}^2 . Show that $\mathcal{B}' = \{[a, \infty) \times [b, \infty) : a, b \in \mathbb{R}\}$ is a basis for a topology \mathcal{T}' which is strictly finer than \mathcal{T} , and not comparable to the usual Euclidean topology.
- 23. [Munkres, p.92, Problem #5] If $\mathcal{T} \subseteq \mathcal{T}'$ are topologies on the set X and $\mathcal{O} \subseteq \mathcal{O}'$ are topologies on the set Y, show that the product topology $\mathcal{T} \times \mathcal{O}$ on $X \times Y$ is coarser than the topology $\mathcal{T}' \times \mathcal{O}'$. Is the converse result true [i.e., product topology coarser implies that the topologies on each factor are coarser]?
- 24. Show that if (X, d) and (Y, d') are metric spaces, then the product topology on $X \times Y$ is also a metric topology. [There are lots of (correct) choices of metric on $X \times Y$; you can take your cue from \mathbb{R}^2 .]