Math 871 Problem Set 1

Starred (**) problems are due Thursday, August 27.

- 1. [Munkres, p.14, #2 (part)] For each statement below, determine whether or not it is true. If true, show why; if not, give an example demonstrating this.
 - (a) For any sets $A, B, C, \{A \subseteq B \text{ and } A \subseteq C\}$ if and only if $A \subseteq B \cap C$.
- (**) (b) For any sets $A, B, C, A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.
 - (c) For any sets $A, B, C, D, \{A \subseteq C \text{ and } B \subseteq D\}$ implies that $A \times C \subseteq B \times D$.
 - (d) For any sets $A, B, C, D, A \times C \subseteq B \times D$ implies that $\{A \subseteq C \text{ and } B \subseteq D\}$.
 - (e) For any sets $A, B, C, D, (A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.
- (**) 2. If $A, C \subseteq X$ and $B, D \subseteq Y$, show how to express $(A \times B) \setminus (C \times D)$ as a union of Cartesian products (i.e., sets of the form $U \times V$).
- 3. (The flip side of the Axiom of Choice.) Show that if $A_i = \emptyset$ for some $i \in I$, then the Cartesian product $\prod_{i \in I} A_i = \emptyset$.
- 4. [Munkres, p.20, #1] Show that if $f: A \to B$ is a function, then
 - (a) If $A_0 \subseteq A$, then $A_0 \subseteq f^{-1}(f(A_0))$; the sets are equal, if f is injective.
 - (b) If $B_0 \subseteq B$, then $f(f^{-1}(B_0)) \subseteq B_0$; the sets are equal, if f is surjective.
- 5. [Munkres, p.20, #2 (part)] If $f: A \to B$ is a function, $A_0, A_1 \subseteq A$, and $B_0, B_1 \subseteq B$, then
 - (a) $f^{-1}(B_0 \cap B_1) = f^{-1}(B_0) \cap f^{-1}(B_1)$
 - (b) $f(A_0 \cap A_1) \subseteq f(A_0) \cap f(A_1)$, but equality does not always hold.
 - (c) $f(A_0 \cup A_1) = f(A_0) \cup f(A_1)$.
- (**) (d) $f^{-1}(B_0 \setminus B_1) = f^{-1}(B_0) \setminus f^{-1}(B_1)$.
- 6. [Munkres, p.44, #7] If A and B are finite sets, show that the set $B^A = \{f : A \to B\}$ of all functions from A to B is also finite.
- 7. [Munlres, p.51, #5 (part)] For each of the following sets, determine whether or not it is countable:
- (**) (a) $A = \{f : \{0, 1\} \to \mathbb{Z}, \text{ all functions from } 0, 1 \text{ to } \mathbb{Z}\}$
- (b) $B = \{f : \mathbb{N} \to \mathbb{N} : f(n) = 1 \text{ for all } n \ge 4\}$
- (c) $F = \{f : \mathbb{N} \to \{0, 1\}$: there is $N \in \mathbb{N}$ with f(n) = 0 for all $n \ge N\}$, all eventually-0 functions.
- (**) (d) $H = \{f : \mathbb{N} \to \mathbb{N} : \text{ there is } N \in \mathbb{N} \text{ with } f(n) = f(N) \text{ for all } n \ge N \}$, all eventually constant functions.
- (e) $P = \{f : \mathbb{N} \to \mathbb{N} : n > m \text{ implies } f(n) > f(m)\}, \text{ all increasing functions.}$
- 8. Let $P(A) = \{B : B \subseteq A\}$ (the *power set* of A), and suppose $f : A \to P(A)$ is a function. Show that the set $B = \{a \in A : a \notin f(a)\}$ is not in the image of f; conclude that f can never be surjective. What does this say about functions $g : P(A) \to A$?