Starred (**) problems are due Thursday, September 2.

- 9. Show that if $d_1, d_2 : X \times X \to \mathbb{R}$ are both metrics on X, then the function $d : X \times X \to \mathbb{R}$ defined by $d(x, y) = d_1(x, y) + d_2(x, y)$ is also a metric on X.
- (**) 10. Show that if $d_1, d_2 : X \times X \to \mathbb{R}$ are both metrics on X, then the function $d : X \times X \to \mathbb{R}$ defined by $d(x, y) = \max\{d_1(x, y), d_2(x, y)\}$ is also a metric on X. What goes, or at least <u>could</u> go, wrong if "max" is replaced by "min"?
- 11. Show that if $f: (X, d) \to (Y, d')$ is a function between metric spaces, and there is a $\lambda \ge 0$ so that $d'(f(x), f(y)) \le \lambda d(x, y)$ for every $x, y \in X$, then f is continuous.

[N.B.: Such functions are called Lipschitz (hence the " λ "...).]

- (**) 12.(a) For a set X, and (fixed) $a \in X$, the <u>excluded point topology</u> on X is the collection of subsets $\mathcal{T}_a = \{U \subseteq X : a \notin U\} \cup \{X\}$. Show that \mathcal{T}_a is a topology on X.
- (**) (b) Show that if (X, \mathcal{T}_a) and (Y, \mathcal{T}_b) are excluded point topologies, then $f : (X, \mathcal{T}_a) \to (Y, \mathcal{T}_b)$ is continuous if and only if either f is constant or f(a) = b.
- 13. Show that the set $\mathcal{T} = \{(a, \infty) : a \in \mathbb{R}\} \cup \{[a, \infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$ of subsets of \mathbb{R} is a topology on \mathbb{R} . [Note that \mathcal{T} can be thought of as the sets $U \subseteq \mathbb{R}$ so that whenever $a \in U$ and $b \geq a$, then $b \in U$.]
- (**) 14. With the (excluded point) topology \mathcal{T}_a on \mathbb{R} from problem #12, and \mathcal{T}' the "usual" topology on \mathbb{R} (open sets are unions of neighborhoods), show that every continuous function $f:(\mathbb{R},\mathcal{T}_a) \to (\mathbb{R},\mathcal{T}')$ must be constant. [Hint: Suppose not! Show that f can't be continuous.]
- 15. With \mathcal{T} the ('all rays'?) topology from problem #13 and \mathcal{T}' the 'usual' topology on \mathbb{R} , show that every continuous function $f : (\mathbb{R}, \mathcal{T}) \to (\mathbb{R}, \mathcal{T}')$ is <u>constant</u>. [Hint: \mathcal{T} doesn't contain very many disjoint sets...] Show, however, that there <u>do</u> exist continuous functions $f : (\mathbb{R}, \mathcal{T}') \to (\mathbb{R}, \mathcal{T})$ which are <u>not</u> constant. [Hint(?): How could $f^{-1}([a, \infty))$ and $f^{-1}((a, \infty))$ both be open?]