Math 871 Problem Set 3

Starred (**) problems are due Thursday, September 10.

16. If $d: X \times X \to \mathbb{R}$ is a metric on X, and \mathcal{T}_d the resulting metric topology on X, show that for any $x_0 \in X$ the function

$$f: (X, \mathcal{T}_d) \to (\mathbb{R}, \mathcal{T}_{usual})$$
 given by $f(x) = d(x_0, x)$

is continuous.

- 17. [Munkres, p.83, #13.3] (a) Show that for any set X, the sets $\{U \subseteq X : X \setminus U \text{ is countable}\} \cup \{\emptyset\}$ form a topology on X. [This is (naturally) called the 'countable complement topology'.]
- (b) Do the sets $\{U \subseteq X : X \setminus U \text{ is infinite}\} \cup \{\emptyset\}$ always form a topology on X? Explain why or why not.

18. [Munkres, p.83, #13.4(a)] If \mathcal{T}_{α} are all topologies on the same set X, show that $\bigcap_{\alpha} \mathcal{T}_{\alpha}$ (the intersection of all of the topologies) is also a topology on X. Is $\bigcup_{\alpha} \mathcal{T}_{\alpha}$ (their union) a topology on X?

- (**) 19. [A useful openness test.] If (X, \mathcal{T}) is a topological space, and $A \subseteq X$, show that $A \in \mathcal{T}$ if and only if for all $x \in A$, there is a $U \in \mathcal{T}$ so that $x \in U \subseteq A$
- (**) 20. Show that if \mathcal{T}_f is the finite-complement topology on the set X, then a non-constant continuous function $f: (X, \mathcal{T}_f) \to (X, \mathcal{T}_f)$ must be finite-to-one, i.e., $f^{-1}(\{a\})$ is finite for every $a \in \mathbb{R}$, and, conversely, that every finite-to-one function is continuous!
 - 21. [Munkres, p.83, Problem #5] Show that if \mathcal{B} is a basis for a topology on X, then $\mathcal{T}(\mathcal{B})$ is the intersection of all topologies that contain \mathcal{B} . Show that the analogous statement is true for the topology generated by a subbasis.

- (**) 22. [Munkres, p.83, Problem #8] (a) Show that the collection $\mathcal{B} = \{(a, b) : a, b \in \mathbb{Q}\}$ is a basis, which generates the 'usual' topology on \mathbb{R} .
- (**) (b) Show, by contrast, that the collection $\mathcal{B}' = \{[a,b) : a, b \in \mathbb{Q}\}$ is a basis for a topology on \mathbb{R} , but the topology it generates is strictly coarser than the 'lower limit' topology \mathcal{T}_{ℓ} on \mathbb{R} .

23. Show that if $\mathcal B$ and $\mathcal B'$ are both bases for topologies on X, then the set

$$\mathcal{B}'' = \{ B \cap B' : B \in \mathcal{B} \text{ and } B' \in \mathcal{B}' \}$$

is also a basis for a topology on X , and that the topology it generates is the coarsest topology on X containing both $\mathcal B$ and $\mathcal B'$.