Math 871 Problem Set 4

Starred (**) problems are due Thursday, September 17.

- 24. Show that $\mathcal{B} = \{(a, \infty) \times (b, \infty) : a, b \in \mathbb{R}\}$ is a basis for a topology \mathcal{T} on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, which is coarser than the usual Euclidean topology on \mathbb{R}^2 . Show that $\mathcal{B}' = \{[a, \infty) \times [b, \infty) : a, b \in \mathbb{R}\}$ is a basis for a topology \mathcal{T}' which is strictly finer than \mathcal{T} , and not comparable to the usual Euclidean topology.
- (**) 25. [Munkres, p.92, Problem #5] If $\mathcal{T} \subseteq \mathcal{T}'$ are topologies on the set X and $\mathcal{O} \subseteq \mathcal{O}'$ are topologies on the set Y, show that the product topology $\mathcal{T} \times \mathcal{O}$ on $X \times Y$ is coarser than the topology $\mathcal{T}' \times \mathcal{O}'$. Is the converse result true [i.e., product topology coarser implies that the topologies on each factor are coarser]?
- 26. Show that if (X, d) and (Y, d') are metric spaces, then the product topology on $X \times Y$ is also a metric topology. [There are lots of (correct) choices of metric on $X \times Y$; you can take your cue from \mathbb{R}^2 .]
- (**) 27. Show that if (X, d) is a metric space, then the metric $d : X \times X \to \mathbb{R}$ is continuous (where $X \times X$ has the product topology, and \mathbb{R} has the usual metric topology). Show, further, that the metric topology \mathcal{T} is the <u>coarsest</u> topology on X for which d is continuous.

[Hint: show that if $\mathcal{T}' \subsetneq \mathcal{T}$, then $N_d(x_0, \epsilon) \notin \mathcal{T}'$ for some x_0 and $\epsilon > 0$; then a certain well-chosen composition $(X, \mathcal{T}') \to (X \times X, \mathcal{T}' \times \mathcal{T}') \xrightarrow{d} \mathbb{R}$, which <u>should</u> be continuous, won't be!]

- (**) 28. [Munkres, p.112, Problem #10] Show that if A, B, X, Y are topological spaces, and $f : A \to X$ and $g : B \to Y$ are both continuous functions, then the function $h : A \times B \to X \times Y$, given by h(a, b) = (f(a), g(b)), is also continuous (using the product topologies on domain and codomain).
- 29. Theorem 15.1 of the text shows that if (X, \mathcal{T}) and Y, \mathcal{T}' are topological spaces with bases $\mathcal{T} = \mathcal{T}(\mathcal{B})$ and $\mathcal{T}' = \mathcal{T}(\mathcal{B}')$, then $\mathcal{B} \times \mathcal{B}' = \{B \times B' : B \in \mathcal{B}, B' \in \mathcal{B}'\}$ is a basis for the product topology on $X \times Y$. [You should convince yourself of this!]

Show, by contrast, that, for an infinite Cartesian product, one natural generalization of this is (typically) <u>false</u>; if $\mathcal{T}_{\alpha} = \mathcal{T}(\mathcal{B}_{\alpha})$ for all α , the sets

$$\prod_{\alpha} (\mathcal{B}_{\alpha}) = \{ \prod_{\alpha} B_{\alpha} : B_{\alpha} \in \mathcal{B}_{\alpha} \text{ for all } \alpha \}$$

is a basis, but for the <u>box</u> topology on $\prod_{\alpha} X_{\alpha}$, not (typically) the product topology. What would the 'correct' basis be, to generate the product topology?

- 30. Show that if $\mathcal{T} \subseteq \mathcal{T}'$ are topologies on the set X, and $A \subseteq X$, then the subspace topology on A induced by \mathcal{T} is coarser than the subspace topology induced by \mathcal{T}' . Find examples of topologies $\mathcal{T} \subsetneq \mathcal{T}'$ on \mathbb{R} so that the topologies that they induce on $[0, 1] \subseteq \mathbb{R}$ are the <u>same</u>.
- 31. Suppose that (Y, \mathcal{T}') is a topological space, $f : X \to Y$ is a function, and we give X the coarsest topology \mathcal{T} making $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ continuous. If $A \subseteq X$, show that the coarsest topology \mathcal{T}'' on A making $f|_A : (A, \mathcal{T}'') \to (Y, \mathcal{T}')$ continuous is the subspace topology that A inherits from \mathcal{T} .