Math 871 Problem Set 5

Starred (**) problems are due Thursday, September 24.

(**) 32. Giving \mathbb{R} the usual (metric) topology, show that if $f: (X, \mathcal{T}) \to \mathbb{R}$ and $g: (X, \mathcal{T}) \to \mathbb{R}$ are both continuous, then the functions $m, M: (X, \mathcal{T}) \to \mathbb{R}$, given by

$$m(x) = \min\{f(x), g(x)\}$$
 $M(x) = \max\{f(x), g(x)\}$

are also both continuous.

[Hint: using the subbasis $\mathcal{S} = \{(a, \infty) : a \in \mathbb{R}\} \cup \{(-\infty, a) : a \in \mathbb{R}\}$ cuts down on your work...]

33. (a) Show that $\{(x,y) \in \mathbb{R}^2 : x+y > a\} = \bigcup_c (c,\infty) \times (a-c,\infty)$ and $\{(x,y) \in \mathbb{R}^2 : x+y < a\} = \bigcup_c (-\infty,c) \times (-\infty,a-c)$ (so both are open sets).

(b) Show that the function $A : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ (with the usual (product) toplogies) given by A(x, y) = x + y is continuous. [Part (a) helps... see previous hint!]

(c) Use a previous problem (!) to conclude that if $f, g : (X, \mathcal{T}) \to (\mathbb{R}, \text{usual})$ are both continuous, then the function $h : (X, \mathcal{T}) \to (\mathbb{R}, \text{usual})$ given by h(x) = f(x) + g(x) is also continuous.

- 34. For $A, B \subseteq X$ with (X, \mathcal{T}) a topological space, if A is open in X and B is closed in X, then $A \setminus B$ is open and $B \setminus A$ is closed.
- 35. 35. [Munkres, p.101, #1] Show that if $A, B, A_{\alpha} \subseteq X$, where (X, \mathcal{T}) is a topological space, then
 - (a) If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$ (b) $\overline{A} \cup \overline{B} = \overline{A \cup B}$
 - (c) $\cup_{\alpha} \overline{A_{\alpha}} \subseteq \overline{\cup_{\alpha} A_{\alpha}}$; in general, equality does not hold.
- (**) 36. Show that if $A \subseteq X$ and X has two topologies $\mathcal{T} \subseteq \mathcal{T}'$, then if $x \in X$ is a limit point of A w.r.t. \mathcal{T}' , then it is also a limit point of A w.r.t. \mathcal{T} .

- 37. Find the closure of the set $A = \{1 \frac{1}{n} : n \in \mathbb{Z}_+\} \subseteq \mathbb{R}$, when \mathbb{R} has the
 - (a) finite complement topology
 - (b) infinite (open) ray to the right topology
 - (c) discrete topology
 - (d) lower limit topology, generated by the basis $\mathcal{B} = \{[a, b) : a, b \in \mathbb{R}\}$
 - (e) countable complement topology.
- (**) 38. [Limit points don't like cts fcns] Show, by example(s), that if $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is continuous and $A \subseteq X$, then $x \in A'$ need not imply that $f(x) \in (f(A))'$, and $f(x) = y \in (f(A))'$ need not imply that there is a $z \in A'$ with f(z) = y. [I don't know if a single example can establish both...]
- 39. Theorem 17.5 in Munkres shows that if $\mathcal{T} = \mathcal{T}(\mathcal{B})$ is a topology on X generated by the basis \mathcal{B} and $A \subseteq X$, then $x \in \overline{A}$ precisely when every element of \mathcal{B} that contains x meets A. Show, on the other hand, that no corresponding result holds for <u>subbases</u> \mathcal{S} . That is, we can have $A \subseteq X$ and an $x \in X$ so that every element of \mathcal{S} that contains x meets A, <u>but</u> $x \notin \overline{A}$.