Math 871 Problem Set 6

Starred (**) problems are due Thursday, October 1.

40. (a) Show that for every $c \in \mathbb{R}$ that the sets $\{(x, y) \in \mathbb{R}^2 : xy > c\}$ and $\{(x, y) \in \mathbb{R}^2 : xy < c\}$ are open in \mathbb{R}^2 .

(b) In a manner similar to problem #33, show that if $f, g : (X, \mathcal{T}) \to (\mathbb{R}, \text{usual})$ are both continuous, then the function $h : (X, \mathcal{T}) \to (\mathbb{R}, \text{usual})$ given by $h(x) = f(x) \cdot g(x)$ is also continuous.

- 41. [Munkres, p.111, #7(a)] Suppose that $f : \mathbb{R} \to \mathbb{R}$ is "continuous from the right", that is, for every $a \in \mathbb{R}$ we have $\lim_{x \to a^+} f(x) = f(a)$ (in the sense of calculus). Show that f is continuous when thought of as a function from the *lower limit topology* \mathcal{T}_{ℓ} on \mathbb{R} to the usual topology on \mathbb{R} .
- (**) 42. [Munkres, p.112, #9(c)] A collection of subsets $\{A_{\alpha}\}_{\alpha inI}$ of (X, \mathcal{T}) is called *locally finite* of for every $x \in X$ there is a neighborhood $x \in U \in \mathcal{T}$ so that $U \cap A_{\alpha}$ is non-empty for only finitely many α . Show that if $f: (X\mathcal{T}) \to (Y, \mathcal{T}')$ is a function, $X = \bigcup_{\alpha \in I} A_{\alpha}, \{A_{\alpha}\}_{\alpha \in I}$ is locally finite, all A_{α} are closed, and $f|_{A_{\alpha}}: (A_{\alpha}, \mathcal{T}_{A_{\alpha}}) \to (Y, \mathcal{T}')$ is continuous for all $\alpha \in I$, then f is continuous.

[Hint: Find a collection <u>open</u> sets whose union is X, each meeting only finitely many A_{α} , and use <u>both</u> of our Pasting Lemmas! See the statements of parts (a) and (b) to help guide you...]

43. [Munkres, p.118, #8] For $i \in \mathbb{Z}_+$ let $a_i, b_i \in \mathbb{R}$ with $a_i > 0$ for all i, and let

$$f:\prod_i \mathbb{R} \to \prod_i \mathbb{R}$$
 be given by $f((x_i)_{i \in \mathbb{Z}_+}) = (a_i x_i + b_i)_{i \in \mathbb{Z}_+}$

Show that f is a homeomorphism, when $\prod_i \mathbb{R}$ is given the product topology (on both the domain and codomain). What happens when $\prod_i \mathbb{R}$ has the <u>box</u> topology?

44. Find an example of subspaces $A, B \subseteq \mathbb{R}$ (giving \mathbb{R} the usual topology) for which there is a continuous bijection $f: A \to B$ whose inverse is **not** continuous.

(**) 45. Show that if $h : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is a homeomorphism, $A \subseteq X$, and $h(A) = B \subseteq Y$, then

$$h|_A^B: (A, \mathcal{T}_A) \to (B, \mathcal{T}'_B)$$
 is also a homeomorphism.

- 46. [Munkres, p.101, #11] Show that if $(X_{\alpha}, \mathcal{T}_{\alpha})$ are Hausdorff for all α , then $\prod_{\alpha} X_{\alpha}$ is Hausdorff for <u>both</u> the product and box topologies.
- (**) 47. Show that if $f, g : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ are both continuous, and (Y, \mathcal{T}') is Hausdorff, then

$$C = \left\{ x \in X : f(x) = g(x) \right\}$$

is a closed subset of X. [Show that the complement is open....]

48. [restatement of Munkres, p.112, #13] Show that if $f, g : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ are both continuous, $A \subseteq X$ is a <u>dense</u> subset of X, (Y, \mathcal{T}') is Hausdorff, and $f|_A = g|_A$, then f = g.

[To paraphrase, a continuous function to a Hausdroff space is uniquely determined by its values on a dense subset.]