Math 871 Problem Set 7

Starred (**) problems are due Thursday, October 8.

- 49. Call a space (X, \mathcal{T}) clumped if for every $U, V \in \mathcal{T}$ with $U \neq \emptyset \neq V$ we have $U \cap V \neq \emptyset$. [I don't actually know if this property has a 'real' name...] Show that if $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is continuous and (X, \mathcal{T}) is clumped, then the image $f(X) \subseteq Y$, with the subspace topology, is clumped. Conclude that 'clumped' is a homeomorphism invariant!
- (**) 50. A space (X, \mathcal{T}) is called *path connected* if for every $x, y \in X$ there is a continuous map $\gamma : ([0, 1], usual) \to (X, \mathcal{T})$ with $\gamma(0) = x$ and $\gamma(1) = y$. Show that if $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is continuous and (X, \mathcal{T}) is path connected, then the image $f(X) \subseteq Y$, with the subspace topology, is path connected. Conclude that 'path connected' is a homeomorphism invariant.
- $(^{**})$ 51. [Munkres, p.144, Problem #2]
- (**) (a) Show that if $p : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is continuous, and there is a continuous map $f : (Y, \mathcal{T}') \to (X, \mathcal{T})$ with $p \circ f = Id_Y$, then p is a quotient map.
- (**) (b) For $A \subseteq X$, a retraction of X onto A is a continuous map $r: X \to A$ with $r|_A = Id_A$. Show that a retraction is a quotient map.
- 52. [Munkres, p.145, Problem #3] Let $X = \mathbb{R} \times \mathbb{R}$ with the product topology (and \mathbb{R} given the usual topology), and $p: X \to (\mathbb{R}, \text{usual})$ the projection on the first coordinate, and let $A = \{(x, y) \in X : x \ge 0 \text{ or } y = 0\}$. Show that $p|_A : A \to \mathbb{R}$ is a quotient map, that is neither open nor closed.
- 53. [Munkres, p.145, Problem # 5] Suppose that $f: X \to Y$ is an open map, and $A \subseteq X$ is an open subset of X. Show that $f|_A: A \to Y$ is also an open map, so $f|_A: A \to f(A)$ is an open map (and hence a quotient map). Is the corresponding statement true if all instances of "open" are replaced with "closed"?

- 54 [Munkres, p.152, Problem #1] Show that if $\mathcal{T} \subseteq \mathcal{T}'$ are topologies on X and (X, \mathcal{T}') is connected, then so is (X, \mathcal{T}) .
- 55. Suppose that X is an infinite set. Which of the following topologies on X make X a connected space?
 - (a) the finite complement topology
 - (b) the excluded point topology (excluding $a \in X$).
 - (c) (for a fixed $a \in X$) the Fort topology

 $\mathcal{T} = \{ U \subseteq X : a \notin U \text{ or } X \setminus U \text{ is finite} \}.$

- (d) the included point topology (including $b \in X$).
- (e) the topology $\mathcal{T} = \{U \subseteq X : b \in U \text{ or } a \notin U\}$. [Note that there are two cases...]
- (**) 56. Give an example of a space X and subset $A \subseteq X$ where int(A) and cl(A) are both connected, but A is not.