Math 871 Problem Set 8

Starred (**) problems are due Thursday, October 29.

61. [Munkres, p.152, Problem #11] Suppose that $p : X \to Y$ is a quotient map, Y is connected, and for every $y \in Y$ the set $p^{-1}(\{y\})$ is a connected subset of X. Show that X is connected.

[Hint: start with a potential separation for X; show that their images would separate Y.]

- 62. Show that if $X_{\alpha}, \mathcal{T}_{\alpha}$ are path-connected spaces, for $\alpha \in I$, then $\prod_{\alpha \in I} X_{\alpha}$, with the product topology, is also path-connected. Show, on the other hand, that there are examples where this is false, if we use the box topology instead.
- (**) 63. [Munkres, p.152, Problem #9] Suppose that $A \subsetneq X$ and $B \subsetneq Y$ are *proper* subsets of X and Y. Show that if (X, \mathcal{T}) and (Y, \mathcal{T}') are both connected, then $(X \times Y) \setminus (A \times B)$ is a connected subset of $X \times Y$.
- 64. Show that if \mathcal{T} and \mathcal{T}' are topolgies on X, (X, \mathcal{T}') is compact, and $\mathcal{T} \subseteq \mathcal{T}'$, then (X, \mathcal{T}) is compact.
- (**) 65. Give an example of a space (X, \mathcal{T}) and subsets $A, B \subseteq X$ so that A and B are compact but $A \cap B$ is not.

[Note: your example can't be Hausdorff!]

66. Let (X, \mathcal{T}) be a Hausdorff space and let $\mathcal{T}' = \{U \subseteq X : X \setminus U \subseteq X \text{ is compact}\} \cup \{\emptyset\}.$

Show that \mathcal{T}' is a topology on X, and is coarser than \mathcal{T} . Show that, in general, the two topologies need not be equal. Do (X, \mathcal{T}) and (X, \mathcal{T}') have the same <u>compact</u> subsets?

67. [Munkres, p.171, Problem #5] Show that if (X, \mathcal{T}) is a Hausdorff space and $A, B \subseteq X$ are disjoint compact subsets of X, then there are subsets $U, V \in \mathcal{T}$ so that $A \subseteq U, B \subseteq V$, and $U \cap V = \emptyset$. (**) 68. [Munkres, p.171, Problem #6] Show that if $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is continuous and surjective, (X, \mathcal{T}) is compact, and (Y, \mathcal{T}') is Hausdorff, then f is a closed map (and therefore a quotient map).